Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch - Flax general utilities.""" | |
import os | |
from pickle import UnpicklingError | |
import numpy as np | |
import jax.numpy as jnp | |
import transformers | |
from flax.serialization import from_bytes | |
from flax.traverse_util import flatten_dict, unflatten_dict | |
from .utils import logging | |
logger = logging.get_logger(__name__) | |
##################### | |
# PyTorch => Flax # | |
##################### | |
def load_pytorch_checkpoint_in_flax_state_dict(flax_model, pytorch_checkpoint_path, allow_missing_keys=False): | |
"""Load pytorch checkpoints in a flax model""" | |
try: | |
import torch # noqa: F401 | |
except ImportError: | |
logger.error( | |
"Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see " | |
"https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation instructions." | |
) | |
raise | |
pt_path = os.path.abspath(pytorch_checkpoint_path) | |
logger.info(f"Loading PyTorch weights from {pt_path}") | |
pt_state_dict = torch.load(pt_path, map_location="cpu") | |
logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters.") | |
flax_state_dict = convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model) | |
return flax_state_dict | |
def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model): | |
# convert pytorch tensor to numpy | |
pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()} | |
random_flax_state_dict = flatten_dict(flax_model.params) | |
flax_state_dict = {} | |
remove_base_model_prefix = (flax_model.base_model_prefix not in flax_model.params) and ( | |
flax_model.base_model_prefix in set([k.split(".")[0] for k in pt_state_dict.keys()]) | |
) | |
add_base_model_prefix = (flax_model.base_model_prefix in flax_model.params) and ( | |
flax_model.base_model_prefix not in set([k.split(".")[0] for k in pt_state_dict.keys()]) | |
) | |
# Need to change some parameters name to match Flax names so that we don't have to fork any layer | |
for pt_key, pt_tensor in pt_state_dict.items(): | |
pt_tuple_key = tuple(pt_key.split(".")) | |
has_base_model_prefix = pt_tuple_key[0] == flax_model.base_model_prefix | |
require_base_model_prefix = (flax_model.base_model_prefix,) + pt_tuple_key in random_flax_state_dict | |
if remove_base_model_prefix and has_base_model_prefix: | |
pt_tuple_key = pt_tuple_key[1:] | |
elif add_base_model_prefix and require_base_model_prefix: | |
pt_tuple_key = (flax_model.base_model_prefix,) + pt_tuple_key | |
# Correctly rename weight parameters | |
if pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: | |
pt_tuple_key = pt_tuple_key[:-1] + ("scale",) | |
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: | |
pt_tuple_key = pt_tuple_key[:-1] + ("embedding",) | |
elif pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and pt_tuple_key not in random_flax_state_dict: | |
# conv layer | |
pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) | |
pt_tensor = pt_tensor.transpose(2, 3, 1, 0) | |
elif pt_tuple_key[-1] == "weight" and pt_tuple_key not in random_flax_state_dict: | |
# linear layer | |
pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) | |
pt_tensor = pt_tensor.T | |
elif pt_tuple_key[-1] == "gamma": | |
pt_tuple_key = pt_tuple_key[:-1] + ("weight",) | |
elif pt_tuple_key[-1] == "beta": | |
pt_tuple_key = pt_tuple_key[:-1] + ("bias",) | |
if pt_tuple_key in random_flax_state_dict: | |
if pt_tensor.shape != random_flax_state_dict[pt_tuple_key].shape: | |
raise ValueError( | |
f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " | |
f"{random_flax_state_dict[pt_tuple_key].shape}, but is {pt_tensor.shape}." | |
) | |
# also add unexpected weight so that warning is thrown | |
flax_state_dict[pt_tuple_key] = jnp.asarray(pt_tensor) | |
return unflatten_dict(flax_state_dict) | |
##################### | |
# Flax => PyTorch # | |
##################### | |
def load_flax_checkpoint_in_pytorch_model(model, flax_checkpoint_path): | |
"""Load flax checkpoints in a PyTorch model""" | |
flax_checkpoint_path = os.path.abspath(flax_checkpoint_path) | |
logger.info(f"Loading Flax weights from {flax_checkpoint_path}") | |
# import correct flax class | |
flax_cls = getattr(transformers, "Flax" + model.__class__.__name__) | |
# load flax weight dict | |
with open(flax_checkpoint_path, "rb") as state_f: | |
try: | |
flax_state_dict = from_bytes(flax_cls, state_f.read()) | |
except UnpicklingError: | |
raise EnvironmentError(f"Unable to convert {flax_checkpoint_path} to Flax deserializable object. ") | |
return load_flax_weights_in_pytorch_model(model, flax_state_dict) | |
def load_flax_weights_in_pytorch_model(pt_model, flax_state): | |
"""Load flax checkpoints in a PyTorch model""" | |
try: | |
import torch # noqa: F401 | |
except ImportError: | |
logger.error( | |
"Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see " | |
"https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation instructions." | |
) | |
raise | |
flax_state_dict = flatten_dict(flax_state) | |
pt_model_dict = pt_model.state_dict() | |
remove_base_model_prefix = (pt_model.base_model_prefix in flax_state) and ( | |
pt_model.base_model_prefix not in set([k.split(".")[0] for k in pt_model_dict.keys()]) | |
) | |
add_base_model_prefix = (pt_model.base_model_prefix not in flax_state) and ( | |
pt_model.base_model_prefix in set([k.split(".")[0] for k in pt_model_dict.keys()]) | |
) | |
# keep track of unexpected & missing keys | |
unexpected_keys = [] | |
missing_keys = set(pt_model_dict.keys()) | |
for flax_key_tuple, flax_tensor in flax_state_dict.items(): | |
has_base_model_prefix = flax_key_tuple[0] == pt_model.base_model_prefix | |
require_base_model_prefix = ".".join((pt_model.base_model_prefix,) + flax_key_tuple) in pt_model_dict | |
# adapt flax_key to prepare for loading from/to base model only | |
if remove_base_model_prefix and has_base_model_prefix: | |
flax_key_tuple = flax_key_tuple[1:] | |
elif add_base_model_prefix and require_base_model_prefix: | |
flax_key_tuple = (pt_model.base_model_prefix,) + flax_key_tuple | |
# rename flax weights to PyTorch format | |
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(flax_key_tuple) not in pt_model_dict: | |
# conv layer | |
flax_key_tuple = flax_key_tuple[:-1] + ("weight",) | |
flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1)) | |
elif flax_key_tuple[-1] == "kernel" and ".".join(flax_key_tuple) not in pt_model_dict: | |
# linear layer | |
flax_key_tuple = flax_key_tuple[:-1] + ("weight",) | |
flax_tensor = flax_tensor.T | |
elif flax_key_tuple[-1] in ["scale", "embedding"]: | |
flax_key_tuple = flax_key_tuple[:-1] + ("weight",) | |
flax_key = ".".join(flax_key_tuple) | |
if flax_key in pt_model_dict: | |
if flax_tensor.shape != pt_model_dict[flax_key].shape: | |
raise ValueError( | |
f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected" | |
f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." | |
) | |
else: | |
# add weight to pytorch dict | |
flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor | |
pt_model_dict[flax_key] = torch.from_numpy(flax_tensor) | |
# remove from missing keys | |
missing_keys.remove(flax_key) | |
else: | |
# weight is not expected by PyTorch model | |
unexpected_keys.append(flax_key) | |
pt_model.load_state_dict(pt_model_dict) | |
# re-transform missing_keys to list | |
missing_keys = list(missing_keys) | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
"Some weights of the Flax model were not used when " | |
f"initializing the PyTorch model {pt_model.__class__.__name__}: {unexpected_keys}\n" | |
f"- This IS expected if you are initializing {pt_model.__class__.__name__} from a Flax model trained on another task " | |
"or with another architecture (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n" | |
f"- This IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect " | |
"to be exactly identical (e.g. initializing a BertForSequenceClassification model from a FlaxBertForSequenceClassification model)." | |
) | |
else: | |
logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n") | |
if len(missing_keys) > 0: | |
logger.warning( | |
f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model " | |
f"and are newly initialized: {missing_keys}\n" | |
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." | |
) | |
else: | |
logger.warning( | |
f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" | |
"If your task is similar to the task the model of the checkpoint was trained on, " | |
f"you can already use {pt_model.__class__.__name__} for predictions without further training." | |
) | |
return pt_model | |