Kaizouku's picture
Upload 564 files
2260825 verified
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import warnings
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union
import torch
from torch.nn.utils.rnn import pad_sequence
from ..file_utils import PaddingStrategy
from ..modeling_utils import PreTrainedModel
from ..models.bert import BertTokenizer, BertTokenizerFast
from ..tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase
InputDataClass = NewType("InputDataClass", Any)
"""
A DataCollator is a function that takes a list of samples from a Dataset and collate them into a batch, as a dictionary
of Tensors.
"""
DataCollator = NewType("DataCollator", Callable[[List[InputDataClass]], Dict[str, torch.Tensor]])
def default_data_collator(features: List[InputDataClass]) -> Dict[str, torch.Tensor]:
"""
Very simple data collator that simply collates batches of dict-like objects and performs special handling for
potential keys named:
- ``label``: handles a single value (int or float) per object
- ``label_ids``: handles a list of values per object
Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs
to the model. See glue and ner for example of how it's useful.
"""
# In this function we'll make the assumption that all `features` in the batch
# have the same attributes.
# So we will look at the first element as a proxy for what attributes exist
# on the whole batch.
if not isinstance(features[0], (dict, BatchEncoding)):
features = [vars(f) for f in features]
first = features[0]
batch = {}
# Special handling for labels.
# Ensure that tensor is created with the correct type
# (it should be automatically the case, but let's make sure of it.)
if "label" in first and first["label"] is not None:
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
dtype = torch.long if isinstance(label, int) else torch.float
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
elif "label_ids" in first and first["label_ids"] is not None:
if isinstance(first["label_ids"], torch.Tensor):
batch["labels"] = torch.stack([f["label_ids"] for f in features])
else:
dtype = torch.long if type(first["label_ids"][0]) is int else torch.float
batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype)
# Handling of all other possible keys.
# Again, we will use the first element to figure out which key/values are not None for this model.
for k, v in first.items():
if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
if isinstance(v, torch.Tensor):
batch[k] = torch.stack([f[k] for f in features])
else:
batch[k] = torch.tensor([f[k] for f in features])
return batch
@dataclass
class DataCollatorWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
The tokenizer used for encoding the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
batch = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
if "label" in batch:
batch["labels"] = batch["label"]
del batch["label"]
if "label_ids" in batch:
batch["labels"] = batch["label_ids"]
del batch["label_ids"]
return batch
@dataclass
class DataCollatorForTokenClassification:
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
The tokenizer used for encoding the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
label_pad_token_id (:obj:`int`, `optional`, defaults to -100):
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
def __call__(self, features):
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
batch = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
# Conversion to tensors will fail if we have labels as they are not of the same length yet.
return_tensors="pt" if labels is None else None,
)
if labels is None:
return batch
sequence_length = torch.tensor(batch["input_ids"]).shape[1]
padding_side = self.tokenizer.padding_side
if padding_side == "right":
batch["labels"] = [label + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels]
else:
batch["labels"] = [[self.label_pad_token_id] * (sequence_length - len(label)) + label for label in labels]
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
return batch
def _collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
"""Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
# Tensorize if necessary.
if isinstance(examples[0], (list, tuple)):
examples = [torch.tensor(e, dtype=torch.long) for e in examples]
# Check if padding is necessary.
length_of_first = examples[0].size(0)
are_tensors_same_length = all(x.size(0) == length_of_first for x in examples)
if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):
return torch.stack(examples, dim=0)
# If yes, check if we have a `pad_token`.
if tokenizer._pad_token is None:
raise ValueError(
"You are attempting to pad samples but the tokenizer you are using"
f" ({tokenizer.__class__.__name__}) does not have a pad token."
)
# Creating the full tensor and filling it with our data.
max_length = max(x.size(0) for x in examples)
if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id)
for i, example in enumerate(examples):
if tokenizer.padding_side == "right":
result[i, : example.shape[0]] = example
else:
result[i, -example.shape[0] :] = example
return result
def tolist(x: Union[List[Any], torch.Tensor]):
return x.tolist() if isinstance(x, torch.Tensor) else x
@dataclass
class DataCollatorForSeq2Seq:
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
The tokenizer used for encoding the data.
model (:class:`~transformers.PreTrainedModel`):
The model that is being trained. If set and has the `prepare_decoder_input_ids_from_labels`, use it to
prepare the `decoder_input_ids`
This is useful when using `label_smoothing` to avoid calculating loss twice.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence is provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
label_pad_token_id (:obj:`int`, `optional`, defaults to -100):
The id to use when padding the labels (-100 will be automatically ignored by PyTorch loss functions).
"""
tokenizer: PreTrainedTokenizerBase
model: Optional[PreTrainedModel] = None
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
def __call__(self, features):
labels = [feature["labels"] for feature in features] if "labels" in features[0].keys() else None
# We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the
# same length to return tensors.
if labels is not None:
max_label_length = max(len(l) for l in labels)
padding_side = self.tokenizer.padding_side
for feature in features:
remainder = [self.label_pad_token_id] * (max_label_length - len(feature["labels"]))
feature["labels"] = (
feature["labels"] + remainder if padding_side == "right" else remainder + feature["labels"]
)
features = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
# prepare decoder_input_ids
if self.model is not None and hasattr(self.model, "prepare_decoder_input_ids_from_labels"):
decoder_input_ids = self.model.prepare_decoder_input_ids_from_labels(labels=features["labels"])
features["decoder_input_ids"] = decoder_input_ids
return features
@dataclass
class DataCollatorForLanguageModeling:
"""
Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
are not all of the same length.
Args:
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
The tokenizer used for encoding the data.
mlm (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to use masked language modeling. If set to :obj:`False`, the labels are the same as the
inputs with the padding tokens ignored (by setting them to -100). Otherwise, the labels are -100 for
non-masked tokens and the value to predict for the masked token.
mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
The probability with which to (randomly) mask tokens in the input, when :obj:`mlm` is set to :obj:`True`.
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
.. note::
For best performance, this data collator should be used with a dataset having items that are dictionaries or
BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
:class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
argument :obj:`return_special_tokens_mask=True`.
"""
tokenizer: PreTrainedTokenizerBase
mlm: bool = True
mlm_probability: float = 0.15
pad_to_multiple_of: Optional[int] = None
def __post_init__(self):
if self.mlm and self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
"You should pass `mlm=False` to train on causal language modeling instead."
)
def __call__(
self, examples: List[Union[List[int], torch.Tensor, Dict[str, torch.Tensor]]]
) -> Dict[str, torch.Tensor]:
# Handle dict or lists with proper padding and conversion to tensor.
if isinstance(examples[0], (dict, BatchEncoding)):
batch = self.tokenizer.pad(examples, return_tensors="pt", pad_to_multiple_of=self.pad_to_multiple_of)
else:
batch = {"input_ids": _collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)}
# If special token mask has been preprocessed, pop it from the dict.
special_tokens_mask = batch.pop("special_tokens_mask", None)
if self.mlm:
batch["input_ids"], batch["labels"] = self.mask_tokens(
batch["input_ids"], special_tokens_mask=special_tokens_mask
)
else:
labels = batch["input_ids"].clone()
if self.tokenizer.pad_token_id is not None:
labels[labels == self.tokenizer.pad_token_id] = -100
batch["labels"] = labels
return batch
def mask_tokens(
self, inputs: torch.Tensor, special_tokens_mask: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.clone()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = torch.full(labels.shape, self.mlm_probability)
if special_tokens_mask is None:
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
else:
special_tokens_mask = special_tokens_mask.bool()
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
@dataclass
class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling):
"""
Data collator used for language modeling that masks entire words.
- collates batches of tensors, honoring their tokenizer's pad_token
- preprocesses batches for masked language modeling
.. note::
This collator relies on details of the implementation of subword tokenization by
:class:`~transformers.BertTokenizer`, specifically that subword tokens are prefixed with `##`. For tokenizers
that do not adhere to this scheme, this collator will produce an output that is roughly equivalent to
:class:`.DataCollatorForLanguageModeling`.
"""
def __call__(
self, examples: List[Union[List[int], torch.Tensor, Dict[str, torch.Tensor]]]
) -> Dict[str, torch.Tensor]:
if isinstance(examples[0], (dict, BatchEncoding)):
input_ids = [e["input_ids"] for e in examples]
else:
input_ids = examples
examples = [{"input_ids": e} for e in examples]
batch_input = _collate_batch(input_ids, self.tokenizer)
mask_labels = []
for e in examples:
ref_tokens = []
for id in tolist(e["input_ids"]):
token = self.tokenizer._convert_id_to_token(id)
ref_tokens.append(token)
# For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢]
if "chinese_ref" in e:
ref_pos = tolist(e["chinese_ref"])
len_seq = len(e["input_ids"])
for i in range(len_seq):
if i in ref_pos:
ref_tokens[i] = "##" + ref_tokens[i]
mask_labels.append(self._whole_word_mask(ref_tokens))
batch_mask = _collate_batch(mask_labels, self.tokenizer)
inputs, labels = self.mask_tokens(batch_input, batch_mask)
return {"input_ids": inputs, "labels": labels}
def _whole_word_mask(self, input_tokens: List[str], max_predictions=512):
"""
Get 0/1 labels for masked tokens with whole word mask proxy
"""
if not isinstance(self.tokenizer, (BertTokenizer, BertTokenizerFast)):
warnings.warn(
"DataCollatorForWholeWordMask is only suitable for BertTokenizer-like tokenizers."
"Please refer to the documentation for more information."
)
cand_indexes = []
for (i, token) in enumerate(input_tokens):
if token == "[CLS]" or token == "[SEP]":
continue
if len(cand_indexes) >= 1 and token.startswith("##"):
cand_indexes[-1].append(i)
else:
cand_indexes.append([i])
random.shuffle(cand_indexes)
num_to_predict = min(max_predictions, max(1, int(round(len(input_tokens) * self.mlm_probability))))
masked_lms = []
covered_indexes = set()
for index_set in cand_indexes:
if len(masked_lms) >= num_to_predict:
break
# If adding a whole-word mask would exceed the maximum number of
# predictions, then just skip this candidate.
if len(masked_lms) + len(index_set) > num_to_predict:
continue
is_any_index_covered = False
for index in index_set:
if index in covered_indexes:
is_any_index_covered = True
break
if is_any_index_covered:
continue
for index in index_set:
covered_indexes.add(index)
masked_lms.append(index)
assert len(covered_indexes) == len(masked_lms)
mask_labels = [1 if i in covered_indexes else 0 for i in range(len(input_tokens))]
return mask_labels
def mask_tokens(self, inputs: torch.Tensor, mask_labels: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set
'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref.
"""
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the --mlm flag if you want to use this tokenizer."
)
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
probability_matrix = mask_labels
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
if self.tokenizer._pad_token is not None:
padding_mask = labels.eq(self.tokenizer.pad_token_id)
probability_matrix.masked_fill_(padding_mask, value=0.0)
masked_indices = probability_matrix.bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
@dataclass
class DataCollatorForSOP(DataCollatorForLanguageModeling):
"""
Data collator used for sentence order prediction task.
- collates batches of tensors, honoring their tokenizer's pad_token
- preprocesses batches for both masked language modeling and sentence order prediction
"""
def __init__(self, *args, **kwargs):
warnings.warn(
"DataCollatorForSOP is deprecated and will be removed in a future version, you can now use "
"DataCollatorForLanguageModeling instead.",
FutureWarning,
)
def __call__(self, examples: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
input_ids = [example["input_ids"] for example in examples]
input_ids = _collate_batch(input_ids, self.tokenizer)
input_ids, labels, attention_mask = self.mask_tokens(input_ids)
token_type_ids = [example["token_type_ids"] for example in examples]
# size of segment_ids varied because randomness, padding zero to the end as the original implementation
token_type_ids = pad_sequence(token_type_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
sop_label_list = [example["sentence_order_label"] for example in examples]
sentence_order_label = torch.stack(sop_label_list)
return {
"input_ids": input_ids,
"labels": labels,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
"sentence_order_label": sentence_order_label,
}
def mask_tokens(self, inputs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Prepare masked tokens inputs/labels/attention_mask for masked language modeling: 80% MASK, 10% random, 10%
original. N-gram not applied yet.
"""
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the --mlm flag if you want to use this tokenizer."
)
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
probability_matrix = torch.full(labels.shape, self.mlm_probability)
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
if self.tokenizer._pad_token is not None:
padding_mask = labels.eq(self.tokenizer.pad_token_id)
probability_matrix.masked_fill_(padding_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
# probability be `1` (masked), however in albert model attention mask `0` means masked, revert the value
attention_mask = (~masked_indices).float()
if self.tokenizer._pad_token is not None:
attention_padding_mask = labels.eq(self.tokenizer.pad_token_id)
attention_mask.masked_fill_(attention_padding_mask, value=1.0)
labels[~masked_indices] = -100 # We only compute loss on masked tokens, -100 is default for CE compute
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels, attention_mask
@dataclass
class DataCollatorForPermutationLanguageModeling:
"""
Data collator used for permutation language modeling.
- collates batches of tensors, honoring their tokenizer's pad_token
- preprocesses batches for permutation language modeling with procedures specific to XLNet
"""
tokenizer: PreTrainedTokenizerBase
plm_probability: float = 1 / 6
max_span_length: int = 5 # maximum length of a span of masked tokens
def __call__(
self, examples: List[Union[List[int], torch.Tensor, Dict[str, torch.Tensor]]]
) -> Dict[str, torch.Tensor]:
if isinstance(examples[0], (dict, BatchEncoding)):
examples = [e["input_ids"] for e in examples]
batch = _collate_batch(examples, self.tokenizer)
inputs, perm_mask, target_mapping, labels = self.mask_tokens(batch)
return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels}
def mask_tokens(self, inputs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
The masked tokens to be predicted for a particular sequence are determined by the following algorithm:
0. Start from the beginning of the sequence by setting ``cur_len = 0`` (number of tokens processed so far).
1. Sample a ``span_length`` from the interval ``[1, max_span_length]`` (length of span of tokens to be
masked)
2. Reserve a context of length ``context_length = span_length / plm_probability`` to surround span to be
masked
3. Sample a starting point ``start_index`` from the interval ``[cur_len, cur_len + context_length -
span_length]`` and mask tokens ``start_index:start_index + span_length``
4. Set ``cur_len = cur_len + context_length``. If ``cur_len < max_len`` (i.e. there are tokens remaining in
the sequence to be processed), repeat from Step 1.
"""
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for permutation language modeling. Please add a mask token if you want to use this tokenizer."
)
if inputs.size(1) % 2 != 0:
raise ValueError(
"This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see relevant comments in source code for details."
)
labels = inputs.clone()
# Creating the mask and target_mapping tensors
masked_indices = torch.full(labels.shape, 0, dtype=torch.bool)
target_mapping = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32)
for i in range(labels.size(0)):
# Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
cur_len = 0
max_len = labels.size(1)
while cur_len < max_len:
# Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
span_length = torch.randint(1, self.max_span_length + 1, (1,)).item()
# Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked
context_length = int(span_length / self.plm_probability)
# Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length`
start_index = cur_len + torch.randint(context_length - span_length + 1, (1,)).item()
masked_indices[i, start_index : start_index + span_length] = 1
# Set `cur_len = cur_len + context_length`
cur_len += context_length
# Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether,
# the i-th predict corresponds to the i-th token.
target_mapping[i] = torch.eye(labels.size(1))
special_tokens_mask = torch.tensor(
[self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()],
dtype=torch.bool,
)
masked_indices.masked_fill_(special_tokens_mask, value=0.0)
if self.tokenizer._pad_token is not None:
padding_mask = labels.eq(self.tokenizer.pad_token_id)
masked_indices.masked_fill_(padding_mask, value=0.0)
# Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc.
non_func_mask = ~(padding_mask | special_tokens_mask)
inputs[masked_indices] = self.tokenizer.mask_token_id
labels[~masked_indices] = -100 # We only compute loss on masked tokens
perm_mask = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32)
for i in range(labels.size(0)):
# Generate permutation indices i.e. sample a random factorisation order for the sequence. This will
# determine which tokens a given token can attend to (encoded in `perm_mask`).
# Note: Length of token sequence being permuted has to be less than or equal to reused sequence length
# (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation,
# we assume that reused length is half of sequence length and permutation length is equal to reused length.
# This requires that the sequence length be even.
# Create a linear factorisation order
perm_index = torch.arange(labels.size(1))
# Split this into two halves, assuming that half the sequence is reused each time
perm_index = perm_index.reshape((-1, labels.size(1) // 2)).transpose(0, 1)
# Permute the two halves such that they do not cross over
perm_index = perm_index[torch.randperm(labels.size(1) // 2)]
# Flatten this out into the desired permuted factorisation order
perm_index = torch.flatten(perm_index.transpose(0, 1))
# Set the permutation indices of non-masked (non-functional) tokens to the
# smallest index (-1) so that:
# (1) They can be seen by all other positions
# (2) They cannot see masked positions, so there won't be information leak
perm_index.masked_fill_(~masked_indices[i] & non_func_mask[i], -1)
# The logic for whether the i-th token can attend on the j-th token based on the factorisation order:
# 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token
# 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token
perm_mask[i] = (
perm_index.reshape((labels.size(1), 1)) <= perm_index.reshape((1, labels.size(1)))
) & masked_indices[i]
return inputs.long(), perm_mask, target_mapping, labels.long()