Spaces:
Sleeping
Sleeping
# flake8: noqa | |
# There's no way to ignore "F401 '...' imported but unused" warnings in this | |
# module, but to preserve other warnings. So, don't check this module at all. | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# When adding a new object to this init, remember to add it twice: once inside the `_import_structure` dictionary and | |
# once inside the `if TYPE_CHECKING` branch. The `TYPE_CHECKING` should have import statements as usual, but they are | |
# only there for type checking. The `_import_structure` is a dictionary submodule to list of object names, and is used | |
# to defer the actual importing for when the objects are requested. This way `import transformers` provides the names | |
# in the namespace without actually importing anything (and especially none of the backends). | |
__version__ = "4.9.1" | |
# Work around to update TensorFlow's absl.logging threshold which alters the | |
# default Python logging output behavior when present. | |
# see: https://github.com/abseil/abseil-py/issues/99 | |
# and: https://github.com/tensorflow/tensorflow/issues/26691#issuecomment-500369493 | |
try: | |
import absl.logging | |
except ImportError: | |
pass | |
else: | |
absl.logging.set_verbosity("info") | |
absl.logging.set_stderrthreshold("info") | |
absl.logging._warn_preinit_stderr = False | |
from typing import TYPE_CHECKING | |
# Check the dependencies satisfy the minimal versions required. | |
from . import dependency_versions_check | |
from .file_utils import ( | |
_LazyModule, | |
is_flax_available, | |
is_sentencepiece_available, | |
is_speech_available, | |
is_tf_available, | |
is_timm_available, | |
is_tokenizers_available, | |
is_torch_available, | |
is_vision_available, | |
) | |
from .utils import logging | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
# Base objects, independent of any specific backend | |
_import_structure = { | |
"configuration_utils": ["PretrainedConfig"], | |
"data": [ | |
"DataProcessor", | |
"InputExample", | |
"InputFeatures", | |
"SingleSentenceClassificationProcessor", | |
"SquadExample", | |
"SquadFeatures", | |
"SquadV1Processor", | |
"SquadV2Processor", | |
"glue_compute_metrics", | |
"glue_convert_examples_to_features", | |
"glue_output_modes", | |
"glue_processors", | |
"glue_tasks_num_labels", | |
"squad_convert_examples_to_features", | |
"xnli_compute_metrics", | |
"xnli_output_modes", | |
"xnli_processors", | |
"xnli_tasks_num_labels", | |
], | |
"feature_extraction_sequence_utils": ["BatchFeature", "SequenceFeatureExtractor"], | |
"file_utils": [ | |
"CONFIG_NAME", | |
"MODEL_CARD_NAME", | |
"PYTORCH_PRETRAINED_BERT_CACHE", | |
"PYTORCH_TRANSFORMERS_CACHE", | |
"SPIECE_UNDERLINE", | |
"TF2_WEIGHTS_NAME", | |
"TF_WEIGHTS_NAME", | |
"TRANSFORMERS_CACHE", | |
"WEIGHTS_NAME", | |
"TensorType", | |
"add_end_docstrings", | |
"add_start_docstrings", | |
"cached_path", | |
"is_apex_available", | |
"is_datasets_available", | |
"is_faiss_available", | |
"is_flax_available", | |
"is_psutil_available", | |
"is_py3nvml_available", | |
"is_scipy_available", | |
"is_sentencepiece_available", | |
"is_sklearn_available", | |
"is_speech_available", | |
"is_tf_available", | |
"is_timm_available", | |
"is_tokenizers_available", | |
"is_torch_available", | |
"is_torch_tpu_available", | |
"is_vision_available", | |
], | |
"hf_argparser": ["HfArgumentParser"], | |
"integrations": [ | |
"is_comet_available", | |
"is_optuna_available", | |
"is_ray_available", | |
"is_ray_tune_available", | |
"is_tensorboard_available", | |
"is_wandb_available", | |
], | |
"modelcard": ["ModelCard"], | |
"modeling_tf_pytorch_utils": [ | |
"convert_tf_weight_name_to_pt_weight_name", | |
"load_pytorch_checkpoint_in_tf2_model", | |
"load_pytorch_model_in_tf2_model", | |
"load_pytorch_weights_in_tf2_model", | |
"load_tf2_checkpoint_in_pytorch_model", | |
"load_tf2_model_in_pytorch_model", | |
"load_tf2_weights_in_pytorch_model", | |
], | |
# Models | |
"models": [], | |
"models.albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig"], | |
"models.auto": [ | |
"ALL_PRETRAINED_CONFIG_ARCHIVE_MAP", | |
"CONFIG_MAPPING", | |
"FEATURE_EXTRACTOR_MAPPING", | |
"MODEL_NAMES_MAPPING", | |
"TOKENIZER_MAPPING", | |
"AutoConfig", | |
"AutoFeatureExtractor", | |
"AutoTokenizer", | |
], | |
"models.bart": ["BartConfig", "BartTokenizer"], | |
"models.barthez": [], | |
"models.bert": [ | |
"BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", | |
"BasicTokenizer", | |
"BertConfig", | |
"BertTokenizer", | |
"WordpieceTokenizer", | |
], | |
"models.bert_generation": ["BertGenerationConfig"], | |
"models.bert_japanese": ["BertJapaneseTokenizer", "CharacterTokenizer", "MecabTokenizer"], | |
"models.bertweet": ["BertweetTokenizer"], | |
"models.big_bird": ["BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdConfig", "BigBirdTokenizer"], | |
"models.bigbird_pegasus": [ | |
"BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", | |
"BigBirdPegasusConfig", | |
], | |
"models.blenderbot": ["BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotTokenizer"], | |
"models.blenderbot_small": [ | |
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", | |
"BlenderbotSmallConfig", | |
"BlenderbotSmallTokenizer", | |
], | |
"models.byt5": ["ByT5Tokenizer"], | |
"models.camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig"], | |
"models.canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig", "CanineTokenizer"], | |
"models.clip": [ | |
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", | |
"CLIPConfig", | |
"CLIPTextConfig", | |
"CLIPTokenizer", | |
"CLIPVisionConfig", | |
], | |
"models.convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertTokenizer"], | |
"models.cpm": ["CpmTokenizer"], | |
"models.ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig", "CTRLTokenizer"], | |
"models.deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaTokenizer"], | |
"models.deberta_v2": ["DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaV2Config"], | |
"models.deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig"], | |
"models.detr": ["DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetrConfig"], | |
"models.distilbert": ["DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertTokenizer"], | |
"models.dpr": [ | |
"DPR_PRETRAINED_CONFIG_ARCHIVE_MAP", | |
"DPRConfig", | |
"DPRContextEncoderTokenizer", | |
"DPRQuestionEncoderTokenizer", | |
"DPRReaderOutput", | |
"DPRReaderTokenizer", | |
], | |
"models.electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraTokenizer"], | |
"models.encoder_decoder": ["EncoderDecoderConfig"], | |
"models.flaubert": ["FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlaubertConfig", "FlaubertTokenizer"], | |
"models.fsmt": ["FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FSMTConfig", "FSMTTokenizer"], | |
"models.funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig", "FunnelTokenizer"], | |
"models.gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2Tokenizer"], | |
"models.gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig"], | |
"models.herbert": ["HerbertTokenizer"], | |
"models.hubert": ["HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "HubertConfig"], | |
"models.ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig"], | |
"models.layoutlm": ["LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMConfig", "LayoutLMTokenizer"], | |
"models.led": ["LED_PRETRAINED_CONFIG_ARCHIVE_MAP", "LEDConfig", "LEDTokenizer"], | |
"models.longformer": ["LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerTokenizer"], | |
"models.luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig", "LukeTokenizer"], | |
"models.lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig", "LxmertTokenizer"], | |
"models.m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config"], | |
"models.marian": ["MarianConfig"], | |
"models.mbart": ["MBartConfig"], | |
"models.megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], | |
"models.mmbt": ["MMBTConfig"], | |
"models.mobilebert": ["MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertTokenizer"], | |
"models.mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig", "MPNetTokenizer"], | |
"models.mt5": ["MT5Config"], | |
"models.openai": ["OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OpenAIGPTConfig", "OpenAIGPTTokenizer"], | |
"models.pegasus": ["PegasusConfig"], | |
"models.phobert": ["PhobertTokenizer"], | |
"models.prophetnet": ["PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ProphetNetConfig", "ProphetNetTokenizer"], | |
"models.rag": ["RagConfig", "RagRetriever", "RagTokenizer"], | |
"models.reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"], | |
"models.retribert": ["RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RetriBertConfig", "RetriBertTokenizer"], | |
"models.roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaTokenizer"], | |
"models.roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerTokenizer"], | |
"models.speech_to_text": [ | |
"SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", | |
"Speech2TextConfig", | |
], | |
"models.squeezebert": ["SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertTokenizer"], | |
"models.t5": ["T5_PRETRAINED_CONFIG_ARCHIVE_MAP", "T5Config"], | |
"models.tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig", "TapasTokenizer"], | |
"models.transfo_xl": [ | |
"TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", | |
"TransfoXLConfig", | |
"TransfoXLCorpus", | |
"TransfoXLTokenizer", | |
], | |
"models.visual_bert": ["VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VisualBertConfig"], | |
"models.vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig"], | |
"models.wav2vec2": [ | |
"WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", | |
"Wav2Vec2Config", | |
"Wav2Vec2CTCTokenizer", | |
"Wav2Vec2FeatureExtractor", | |
"Wav2Vec2Processor", | |
"Wav2Vec2Tokenizer", | |
], | |
"models.xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMTokenizer"], | |
"models.xlm_prophetnet": ["XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMProphetNetConfig"], | |
"models.xlm_roberta": ["XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig"], | |
"models.xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"], | |
"pipelines": [ | |
"AutomaticSpeechRecognitionPipeline", | |
"Conversation", | |
"ConversationalPipeline", | |
"CsvPipelineDataFormat", | |
"FeatureExtractionPipeline", | |
"FillMaskPipeline", | |
"ImageClassificationPipeline", | |
"JsonPipelineDataFormat", | |
"NerPipeline", | |
"PipedPipelineDataFormat", | |
"Pipeline", | |
"PipelineDataFormat", | |
"QuestionAnsweringPipeline", | |
"SummarizationPipeline", | |
"TableQuestionAnsweringPipeline", | |
"Text2TextGenerationPipeline", | |
"TextClassificationPipeline", | |
"TextGenerationPipeline", | |
"TokenClassificationPipeline", | |
"TranslationPipeline", | |
"ZeroShotClassificationPipeline", | |
"pipeline", | |
], | |
"tokenization_utils": ["PreTrainedTokenizer"], | |
"tokenization_utils_base": [ | |
"AddedToken", | |
"BatchEncoding", | |
"CharSpan", | |
"PreTrainedTokenizerBase", | |
"SpecialTokensMixin", | |
"TokenSpan", | |
], | |
"trainer_callback": [ | |
"DefaultFlowCallback", | |
"EarlyStoppingCallback", | |
"PrinterCallback", | |
"ProgressCallback", | |
"TrainerCallback", | |
"TrainerControl", | |
"TrainerState", | |
], | |
"trainer_utils": ["EvalPrediction", "IntervalStrategy", "SchedulerType", "set_seed"], | |
"training_args": ["TrainingArguments"], | |
"training_args_seq2seq": ["Seq2SeqTrainingArguments"], | |
"training_args_tf": ["TFTrainingArguments"], | |
"utils": ["logging"], | |
} | |
# sentencepiece-backed objects | |
if is_sentencepiece_available(): | |
_import_structure["models.albert"].append("AlbertTokenizer") | |
_import_structure["models.barthez"].append("BarthezTokenizer") | |
_import_structure["models.bert_generation"].append("BertGenerationTokenizer") | |
_import_structure["models.camembert"].append("CamembertTokenizer") | |
_import_structure["models.deberta_v2"].append("DebertaV2Tokenizer") | |
_import_structure["models.m2m_100"].append("M2M100Tokenizer") | |
_import_structure["models.marian"].append("MarianTokenizer") | |
_import_structure["models.mbart"].append("MBartTokenizer") | |
_import_structure["models.mbart"].append("MBart50Tokenizer") | |
_import_structure["models.mt5"].append("MT5Tokenizer") | |
_import_structure["models.pegasus"].append("PegasusTokenizer") | |
_import_structure["models.reformer"].append("ReformerTokenizer") | |
_import_structure["models.speech_to_text"].append("Speech2TextTokenizer") | |
_import_structure["models.t5"].append("T5Tokenizer") | |
_import_structure["models.xlm_prophetnet"].append("XLMProphetNetTokenizer") | |
_import_structure["models.xlm_roberta"].append("XLMRobertaTokenizer") | |
_import_structure["models.xlnet"].append("XLNetTokenizer") | |
else: | |
from .utils import dummy_sentencepiece_objects | |
_import_structure["utils.dummy_sentencepiece_objects"] = [ | |
name for name in dir(dummy_sentencepiece_objects) if not name.startswith("_") | |
] | |
# tokenizers-backed objects | |
if is_tokenizers_available(): | |
# Fast tokenizers | |
_import_structure["models.roformer"].append("RoFormerTokenizerFast") | |
_import_structure["models.clip"].append("CLIPTokenizerFast") | |
_import_structure["models.convbert"].append("ConvBertTokenizerFast") | |
_import_structure["models.albert"].append("AlbertTokenizerFast") | |
_import_structure["models.bart"].append("BartTokenizerFast") | |
_import_structure["models.barthez"].append("BarthezTokenizerFast") | |
_import_structure["models.bert"].append("BertTokenizerFast") | |
_import_structure["models.big_bird"].append("BigBirdTokenizerFast") | |
_import_structure["models.camembert"].append("CamembertTokenizerFast") | |
_import_structure["models.deberta"].append("DebertaTokenizerFast") | |
_import_structure["models.distilbert"].append("DistilBertTokenizerFast") | |
_import_structure["models.dpr"].extend( | |
["DPRContextEncoderTokenizerFast", "DPRQuestionEncoderTokenizerFast", "DPRReaderTokenizerFast"] | |
) | |
_import_structure["models.electra"].append("ElectraTokenizerFast") | |
_import_structure["models.funnel"].append("FunnelTokenizerFast") | |
_import_structure["models.gpt2"].append("GPT2TokenizerFast") | |
_import_structure["models.herbert"].append("HerbertTokenizerFast") | |
_import_structure["models.layoutlm"].append("LayoutLMTokenizerFast") | |
_import_structure["models.led"].append("LEDTokenizerFast") | |
_import_structure["models.longformer"].append("LongformerTokenizerFast") | |
_import_structure["models.lxmert"].append("LxmertTokenizerFast") | |
_import_structure["models.mbart"].append("MBartTokenizerFast") | |
_import_structure["models.mbart"].append("MBart50TokenizerFast") | |
_import_structure["models.mobilebert"].append("MobileBertTokenizerFast") | |
_import_structure["models.mpnet"].append("MPNetTokenizerFast") | |
_import_structure["models.mt5"].append("MT5TokenizerFast") | |
_import_structure["models.openai"].append("OpenAIGPTTokenizerFast") | |
_import_structure["models.pegasus"].append("PegasusTokenizerFast") | |
_import_structure["models.reformer"].append("ReformerTokenizerFast") | |
_import_structure["models.retribert"].append("RetriBertTokenizerFast") | |
_import_structure["models.roberta"].append("RobertaTokenizerFast") | |
_import_structure["models.squeezebert"].append("SqueezeBertTokenizerFast") | |
_import_structure["models.t5"].append("T5TokenizerFast") | |
_import_structure["models.xlm_roberta"].append("XLMRobertaTokenizerFast") | |
_import_structure["models.xlnet"].append("XLNetTokenizerFast") | |
_import_structure["tokenization_utils_fast"] = ["PreTrainedTokenizerFast"] | |
else: | |
from .utils import dummy_tokenizers_objects | |
_import_structure["utils.dummy_tokenizers_objects"] = [ | |
name for name in dir(dummy_tokenizers_objects) if not name.startswith("_") | |
] | |
if is_sentencepiece_available() and is_tokenizers_available(): | |
_import_structure["convert_slow_tokenizer"] = ["SLOW_TO_FAST_CONVERTERS", "convert_slow_tokenizer"] | |
else: | |
from .utils import dummy_sentencepiece_and_tokenizers_objects | |
_import_structure["utils.dummy_sentencepiece_and_tokenizers_objects"] = [ | |
name for name in dir(dummy_sentencepiece_and_tokenizers_objects) if not name.startswith("_") | |
] | |
# Speech-specific objects | |
if is_speech_available(): | |
_import_structure["models.speech_to_text"].append("Speech2TextFeatureExtractor") | |
else: | |
from .utils import dummy_speech_objects | |
_import_structure["utils.dummy_speech_objects"] = [ | |
name for name in dir(dummy_speech_objects) if not name.startswith("_") | |
] | |
if is_sentencepiece_available() and is_speech_available(): | |
_import_structure["models.speech_to_text"].append("Speech2TextProcessor") | |
else: | |
from .utils import dummy_sentencepiece_and_speech_objects | |
_import_structure["utils.dummy_sentencepiece_and_speech_objects"] = [ | |
name for name in dir(dummy_sentencepiece_and_speech_objects) if not name.startswith("_") | |
] | |
# Vision-specific objects | |
if is_vision_available(): | |
_import_structure["image_utils"] = ["ImageFeatureExtractionMixin"] | |
_import_structure["models.clip"].append("CLIPFeatureExtractor") | |
_import_structure["models.clip"].append("CLIPProcessor") | |
_import_structure["models.deit"].append("DeiTFeatureExtractor") | |
_import_structure["models.detr"].append("DetrFeatureExtractor") | |
_import_structure["models.vit"].append("ViTFeatureExtractor") | |
else: | |
from .utils import dummy_vision_objects | |
_import_structure["utils.dummy_vision_objects"] = [ | |
name for name in dir(dummy_vision_objects) if not name.startswith("_") | |
] | |
# Timm-backed objects | |
if is_timm_available() and is_vision_available(): | |
_import_structure["models.detr"].extend( | |
[ | |
"DETR_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"DetrForObjectDetection", | |
"DetrForSegmentation", | |
"DetrModel", | |
"DetrPreTrainedModel", | |
] | |
) | |
else: | |
from .utils import dummy_timm_objects | |
_import_structure["utils.dummy_timm_objects"] = [ | |
name for name in dir(dummy_timm_objects) if not name.startswith("_") | |
] | |
# PyTorch-backed objects | |
if is_torch_available(): | |
_import_structure["benchmark.benchmark"] = ["PyTorchBenchmark"] | |
_import_structure["benchmark.benchmark_args"] = ["PyTorchBenchmarkArguments"] | |
_import_structure["data.data_collator"] = [ | |
"DataCollator", | |
"DataCollatorForLanguageModeling", | |
"DataCollatorForPermutationLanguageModeling", | |
"DataCollatorForSeq2Seq", | |
"DataCollatorForSOP", | |
"DataCollatorForTokenClassification", | |
"DataCollatorForWholeWordMask", | |
"DataCollatorWithPadding", | |
"default_data_collator", | |
] | |
_import_structure["data.datasets"] = [ | |
"GlueDataset", | |
"GlueDataTrainingArguments", | |
"LineByLineTextDataset", | |
"LineByLineWithRefDataset", | |
"LineByLineWithSOPTextDataset", | |
"SquadDataset", | |
"SquadDataTrainingArguments", | |
"TextDataset", | |
"TextDatasetForNextSentencePrediction", | |
] | |
_import_structure["generation_beam_search"] = ["BeamScorer", "BeamSearchScorer"] | |
_import_structure["generation_logits_process"] = [ | |
"ForcedBOSTokenLogitsProcessor", | |
"ForcedEOSTokenLogitsProcessor", | |
"HammingDiversityLogitsProcessor", | |
"InfNanRemoveLogitsProcessor", | |
"LogitsProcessor", | |
"LogitsProcessorList", | |
"LogitsWarper", | |
"MinLengthLogitsProcessor", | |
"NoBadWordsLogitsProcessor", | |
"NoRepeatNGramLogitsProcessor", | |
"PrefixConstrainedLogitsProcessor", | |
"RepetitionPenaltyLogitsProcessor", | |
"TemperatureLogitsWarper", | |
"TopKLogitsWarper", | |
"TopPLogitsWarper", | |
] | |
_import_structure["generation_stopping_criteria"] = [ | |
"MaxLengthCriteria", | |
"MaxTimeCriteria", | |
"StoppingCriteria", | |
"StoppingCriteriaList", | |
] | |
_import_structure["generation_utils"] = ["top_k_top_p_filtering"] | |
_import_structure["modeling_utils"] = ["Conv1D", "PreTrainedModel", "apply_chunking_to_forward", "prune_layer"] | |
# PyTorch models structure | |
_import_structure["models.albert"].extend( | |
[ | |
"ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"AlbertForMaskedLM", | |
"AlbertForMultipleChoice", | |
"AlbertForPreTraining", | |
"AlbertForQuestionAnswering", | |
"AlbertForSequenceClassification", | |
"AlbertForTokenClassification", | |
"AlbertModel", | |
"AlbertPreTrainedModel", | |
"load_tf_weights_in_albert", | |
] | |
) | |
_import_structure["models.auto"].extend( | |
[ | |
"MODEL_FOR_CAUSAL_LM_MAPPING", | |
"MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING", | |
"MODEL_FOR_MASKED_LM_MAPPING", | |
"MODEL_FOR_MULTIPLE_CHOICE_MAPPING", | |
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING", | |
"MODEL_FOR_OBJECT_DETECTION_MAPPING", | |
"MODEL_FOR_PRETRAINING_MAPPING", | |
"MODEL_FOR_QUESTION_ANSWERING_MAPPING", | |
"MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", | |
"MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", | |
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING", | |
"MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", | |
"MODEL_MAPPING", | |
"MODEL_WITH_LM_HEAD_MAPPING", | |
"AutoModel", | |
"AutoModelForCausalLM", | |
"AutoModelForImageClassification", | |
"AutoModelForMaskedLM", | |
"AutoModelForMultipleChoice", | |
"AutoModelForNextSentencePrediction", | |
"AutoModelForPreTraining", | |
"AutoModelForQuestionAnswering", | |
"AutoModelForSeq2SeqLM", | |
"AutoModelForSequenceClassification", | |
"AutoModelForTableQuestionAnswering", | |
"AutoModelForTokenClassification", | |
"AutoModelWithLMHead", | |
] | |
) | |
_import_structure["models.bart"].extend( | |
[ | |
"BART_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"BartForCausalLM", | |
"BartForConditionalGeneration", | |
"BartForQuestionAnswering", | |
"BartForSequenceClassification", | |
"BartModel", | |
"BartPretrainedModel", | |
"PretrainedBartModel", | |
] | |
) | |
_import_structure["models.bert"].extend( | |
[ | |
"BERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"BertForMaskedLM", | |
"BertForMultipleChoice", | |
"BertForNextSentencePrediction", | |
"BertForPreTraining", | |
"BertForQuestionAnswering", | |
"BertForSequenceClassification", | |
"BertForTokenClassification", | |
"BertLayer", | |
"BertLMHeadModel", | |
"BertModel", | |
"BertPreTrainedModel", | |
"load_tf_weights_in_bert", | |
] | |
) | |
_import_structure["models.bert_generation"].extend( | |
[ | |
"BertGenerationDecoder", | |
"BertGenerationEncoder", | |
"BertGenerationPreTrainedModel", | |
"load_tf_weights_in_bert_generation", | |
] | |
) | |
_import_structure["models.big_bird"].extend( | |
[ | |
"BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"BigBirdForCausalLM", | |
"BigBirdForMaskedLM", | |
"BigBirdForMultipleChoice", | |
"BigBirdForPreTraining", | |
"BigBirdForQuestionAnswering", | |
"BigBirdForSequenceClassification", | |
"BigBirdForTokenClassification", | |
"BigBirdLayer", | |
"BigBirdModel", | |
"BigBirdPreTrainedModel", | |
"load_tf_weights_in_big_bird", | |
] | |
) | |
_import_structure["models.bigbird_pegasus"].extend( | |
[ | |
"BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"BigBirdPegasusForCausalLM", | |
"BigBirdPegasusForConditionalGeneration", | |
"BigBirdPegasusForQuestionAnswering", | |
"BigBirdPegasusForSequenceClassification", | |
"BigBirdPegasusModel", | |
"BigBirdPegasusPreTrainedModel", | |
] | |
) | |
_import_structure["models.blenderbot"].extend( | |
[ | |
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"BlenderbotForCausalLM", | |
"BlenderbotForConditionalGeneration", | |
"BlenderbotModel", | |
"BlenderbotPreTrainedModel", | |
] | |
) | |
_import_structure["models.blenderbot_small"].extend( | |
[ | |
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"BlenderbotSmallForCausalLM", | |
"BlenderbotSmallForConditionalGeneration", | |
"BlenderbotSmallModel", | |
"BlenderbotSmallPreTrainedModel", | |
] | |
) | |
_import_structure["models.camembert"].extend( | |
[ | |
"CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"CamembertForCausalLM", | |
"CamembertForMaskedLM", | |
"CamembertForMultipleChoice", | |
"CamembertForQuestionAnswering", | |
"CamembertForSequenceClassification", | |
"CamembertForTokenClassification", | |
"CamembertModel", | |
] | |
) | |
_import_structure["models.canine"].extend( | |
[ | |
"CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"CanineForMultipleChoice", | |
"CanineForQuestionAnswering", | |
"CanineForSequenceClassification", | |
"CanineForTokenClassification", | |
"CanineLayer", | |
"CanineModel", | |
"CaninePreTrainedModel", | |
"load_tf_weights_in_canine", | |
] | |
) | |
_import_structure["models.clip"].extend( | |
[ | |
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"CLIPModel", | |
"CLIPPreTrainedModel", | |
"CLIPTextModel", | |
"CLIPVisionModel", | |
] | |
) | |
_import_structure["models.convbert"].extend( | |
[ | |
"CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"ConvBertForMaskedLM", | |
"ConvBertForMultipleChoice", | |
"ConvBertForQuestionAnswering", | |
"ConvBertForSequenceClassification", | |
"ConvBertForTokenClassification", | |
"ConvBertLayer", | |
"ConvBertModel", | |
"ConvBertPreTrainedModel", | |
"load_tf_weights_in_convbert", | |
] | |
) | |
_import_structure["models.ctrl"].extend( | |
[ | |
"CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"CTRLForSequenceClassification", | |
"CTRLLMHeadModel", | |
"CTRLModel", | |
"CTRLPreTrainedModel", | |
] | |
) | |
_import_structure["models.deberta"].extend( | |
[ | |
"DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"DebertaForMaskedLM", | |
"DebertaForQuestionAnswering", | |
"DebertaForSequenceClassification", | |
"DebertaForTokenClassification", | |
"DebertaModel", | |
"DebertaPreTrainedModel", | |
] | |
) | |
_import_structure["models.deberta_v2"].extend( | |
[ | |
"DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"DebertaV2ForMaskedLM", | |
"DebertaV2ForQuestionAnswering", | |
"DebertaV2ForSequenceClassification", | |
"DebertaV2ForTokenClassification", | |
"DebertaV2Model", | |
"DebertaV2PreTrainedModel", | |
] | |
) | |
_import_structure["models.deit"].extend( | |
[ | |
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"DeiTForImageClassification", | |
"DeiTForImageClassificationWithTeacher", | |
"DeiTModel", | |
"DeiTPreTrainedModel", | |
] | |
) | |
_import_structure["models.distilbert"].extend( | |
[ | |
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"DistilBertForMaskedLM", | |
"DistilBertForMultipleChoice", | |
"DistilBertForQuestionAnswering", | |
"DistilBertForSequenceClassification", | |
"DistilBertForTokenClassification", | |
"DistilBertModel", | |
"DistilBertPreTrainedModel", | |
] | |
) | |
_import_structure["models.dpr"].extend( | |
[ | |
"DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"DPRContextEncoder", | |
"DPRPretrainedContextEncoder", | |
"DPRPretrainedQuestionEncoder", | |
"DPRPretrainedReader", | |
"DPRQuestionEncoder", | |
"DPRReader", | |
] | |
) | |
_import_structure["models.electra"].extend( | |
[ | |
"ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"ElectraForMaskedLM", | |
"ElectraForMultipleChoice", | |
"ElectraForPreTraining", | |
"ElectraForQuestionAnswering", | |
"ElectraForSequenceClassification", | |
"ElectraForTokenClassification", | |
"ElectraModel", | |
"ElectraPreTrainedModel", | |
"load_tf_weights_in_electra", | |
] | |
) | |
_import_structure["models.encoder_decoder"].append("EncoderDecoderModel") | |
_import_structure["models.flaubert"].extend( | |
[ | |
"FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"FlaubertForMultipleChoice", | |
"FlaubertForQuestionAnswering", | |
"FlaubertForQuestionAnsweringSimple", | |
"FlaubertForSequenceClassification", | |
"FlaubertForTokenClassification", | |
"FlaubertModel", | |
"FlaubertWithLMHeadModel", | |
] | |
) | |
_import_structure["models.fsmt"].extend(["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"]) | |
_import_structure["models.funnel"].extend( | |
[ | |
"FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"FunnelBaseModel", | |
"FunnelForMaskedLM", | |
"FunnelForMultipleChoice", | |
"FunnelForPreTraining", | |
"FunnelForQuestionAnswering", | |
"FunnelForSequenceClassification", | |
"FunnelForTokenClassification", | |
"FunnelModel", | |
"FunnelPreTrainedModel", | |
"load_tf_weights_in_funnel", | |
] | |
) | |
_import_structure["models.gpt2"].extend( | |
[ | |
"GPT2_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"GPT2DoubleHeadsModel", | |
"GPT2ForSequenceClassification", | |
"GPT2LMHeadModel", | |
"GPT2Model", | |
"GPT2PreTrainedModel", | |
"load_tf_weights_in_gpt2", | |
] | |
) | |
_import_structure["models.gpt_neo"].extend( | |
[ | |
"GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"GPTNeoForCausalLM", | |
"GPTNeoForSequenceClassification", | |
"GPTNeoModel", | |
"GPTNeoPreTrainedModel", | |
"load_tf_weights_in_gpt_neo", | |
] | |
) | |
_import_structure["models.hubert"].extend( | |
[ | |
"HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"HubertForCTC", | |
"HubertModel", | |
"HubertPreTrainedModel", | |
] | |
) | |
_import_structure["models.ibert"].extend( | |
[ | |
"IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"IBertForMaskedLM", | |
"IBertForMultipleChoice", | |
"IBertForQuestionAnswering", | |
"IBertForSequenceClassification", | |
"IBertForTokenClassification", | |
"IBertModel", | |
"IBertPreTrainedModel", | |
] | |
) | |
_import_structure["models.layoutlm"].extend( | |
[ | |
"LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"LayoutLMForMaskedLM", | |
"LayoutLMForSequenceClassification", | |
"LayoutLMForTokenClassification", | |
"LayoutLMModel", | |
"LayoutLMPreTrainedModel", | |
] | |
) | |
_import_structure["models.led"].extend( | |
[ | |
"LED_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"LEDForConditionalGeneration", | |
"LEDForQuestionAnswering", | |
"LEDForSequenceClassification", | |
"LEDModel", | |
"LEDPreTrainedModel", | |
] | |
) | |
_import_structure["models.longformer"].extend( | |
[ | |
"LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"LongformerForMaskedLM", | |
"LongformerForMultipleChoice", | |
"LongformerForQuestionAnswering", | |
"LongformerForSequenceClassification", | |
"LongformerForTokenClassification", | |
"LongformerModel", | |
"LongformerPreTrainedModel", | |
"LongformerSelfAttention", | |
] | |
) | |
_import_structure["models.luke"].extend( | |
[ | |
"LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"LukeForEntityClassification", | |
"LukeForEntityPairClassification", | |
"LukeForEntitySpanClassification", | |
"LukeModel", | |
"LukePreTrainedModel", | |
] | |
) | |
_import_structure["models.lxmert"].extend( | |
[ | |
"LxmertEncoder", | |
"LxmertForPreTraining", | |
"LxmertForQuestionAnswering", | |
"LxmertModel", | |
"LxmertPreTrainedModel", | |
"LxmertVisualFeatureEncoder", | |
"LxmertXLayer", | |
] | |
) | |
_import_structure["models.m2m_100"].extend( | |
[ | |
"M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"M2M100ForConditionalGeneration", | |
"M2M100Model", | |
"M2M100PreTrainedModel", | |
] | |
) | |
_import_structure["models.marian"].extend(["MarianForCausalLM", "MarianModel", "MarianMTModel"]) | |
_import_structure["models.mbart"].extend( | |
[ | |
"MBartForCausalLM", | |
"MBartForConditionalGeneration", | |
"MBartForQuestionAnswering", | |
"MBartForSequenceClassification", | |
"MBartModel", | |
"MBartPreTrainedModel", | |
] | |
) | |
_import_structure["models.megatron_bert"].extend( | |
[ | |
"MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"MegatronBertForCausalLM", | |
"MegatronBertForMaskedLM", | |
"MegatronBertForMultipleChoice", | |
"MegatronBertForNextSentencePrediction", | |
"MegatronBertForPreTraining", | |
"MegatronBertForQuestionAnswering", | |
"MegatronBertForSequenceClassification", | |
"MegatronBertForTokenClassification", | |
"MegatronBertModel", | |
"MegatronBertPreTrainedModel", | |
] | |
) | |
_import_structure["models.mmbt"].extend(["MMBTForClassification", "MMBTModel", "ModalEmbeddings"]) | |
_import_structure["models.mobilebert"].extend( | |
[ | |
"MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"MobileBertForMaskedLM", | |
"MobileBertForMultipleChoice", | |
"MobileBertForNextSentencePrediction", | |
"MobileBertForPreTraining", | |
"MobileBertForQuestionAnswering", | |
"MobileBertForSequenceClassification", | |
"MobileBertForTokenClassification", | |
"MobileBertLayer", | |
"MobileBertModel", | |
"MobileBertPreTrainedModel", | |
"load_tf_weights_in_mobilebert", | |
] | |
) | |
_import_structure["models.mpnet"].extend( | |
[ | |
"MPNET_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"MPNetForMaskedLM", | |
"MPNetForMultipleChoice", | |
"MPNetForQuestionAnswering", | |
"MPNetForSequenceClassification", | |
"MPNetForTokenClassification", | |
"MPNetLayer", | |
"MPNetModel", | |
"MPNetPreTrainedModel", | |
] | |
) | |
_import_structure["models.mt5"].extend(["MT5EncoderModel", "MT5ForConditionalGeneration", "MT5Model"]) | |
_import_structure["models.openai"].extend( | |
[ | |
"OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"OpenAIGPTDoubleHeadsModel", | |
"OpenAIGPTForSequenceClassification", | |
"OpenAIGPTLMHeadModel", | |
"OpenAIGPTModel", | |
"OpenAIGPTPreTrainedModel", | |
"load_tf_weights_in_openai_gpt", | |
] | |
) | |
_import_structure["models.pegasus"].extend( | |
["PegasusForCausalLM", "PegasusForConditionalGeneration", "PegasusModel", "PegasusPreTrainedModel"] | |
) | |
_import_structure["models.prophetnet"].extend( | |
[ | |
"PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"ProphetNetDecoder", | |
"ProphetNetEncoder", | |
"ProphetNetForCausalLM", | |
"ProphetNetForConditionalGeneration", | |
"ProphetNetModel", | |
"ProphetNetPreTrainedModel", | |
] | |
) | |
_import_structure["models.rag"].extend( | |
["RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration"] | |
) | |
_import_structure["models.reformer"].extend( | |
[ | |
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"ReformerAttention", | |
"ReformerForMaskedLM", | |
"ReformerForQuestionAnswering", | |
"ReformerForSequenceClassification", | |
"ReformerLayer", | |
"ReformerModel", | |
"ReformerModelWithLMHead", | |
"ReformerPreTrainedModel", | |
] | |
) | |
_import_structure["models.retribert"].extend( | |
["RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RetriBertModel", "RetriBertPreTrainedModel"] | |
) | |
_import_structure["models.roberta"].extend( | |
[ | |
"ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"RobertaForCausalLM", | |
"RobertaForMaskedLM", | |
"RobertaForMultipleChoice", | |
"RobertaForQuestionAnswering", | |
"RobertaForSequenceClassification", | |
"RobertaForTokenClassification", | |
"RobertaModel", | |
"RobertaPreTrainedModel", | |
] | |
) | |
_import_structure["models.roformer"].extend( | |
[ | |
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"RoFormerForCausalLM", | |
"RoFormerForMaskedLM", | |
"RoFormerForMultipleChoice", | |
"RoFormerForQuestionAnswering", | |
"RoFormerForSequenceClassification", | |
"RoFormerForTokenClassification", | |
"RoFormerLayer", | |
"RoFormerModel", | |
"RoFormerPreTrainedModel", | |
"load_tf_weights_in_roformer", | |
] | |
) | |
_import_structure["models.speech_to_text"].extend( | |
[ | |
"SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"Speech2TextForConditionalGeneration", | |
"Speech2TextModel", | |
"Speech2TextPreTrainedModel", | |
] | |
) | |
_import_structure["models.squeezebert"].extend( | |
[ | |
"SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"SqueezeBertForMaskedLM", | |
"SqueezeBertForMultipleChoice", | |
"SqueezeBertForQuestionAnswering", | |
"SqueezeBertForSequenceClassification", | |
"SqueezeBertForTokenClassification", | |
"SqueezeBertModel", | |
"SqueezeBertModule", | |
"SqueezeBertPreTrainedModel", | |
] | |
) | |
_import_structure["models.t5"].extend( | |
[ | |
"T5_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"T5EncoderModel", | |
"T5ForConditionalGeneration", | |
"T5Model", | |
"T5PreTrainedModel", | |
"load_tf_weights_in_t5", | |
] | |
) | |
_import_structure["models.tapas"].extend( | |
[ | |
"TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TapasForMaskedLM", | |
"TapasForQuestionAnswering", | |
"TapasForSequenceClassification", | |
"TapasModel", | |
"TapasPreTrainedModel", | |
] | |
) | |
_import_structure["models.transfo_xl"].extend( | |
[ | |
"TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"AdaptiveEmbedding", | |
"TransfoXLForSequenceClassification", | |
"TransfoXLLMHeadModel", | |
"TransfoXLModel", | |
"TransfoXLPreTrainedModel", | |
"load_tf_weights_in_transfo_xl", | |
] | |
) | |
_import_structure["models.visual_bert"].extend( | |
[ | |
"VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"VisualBertForMultipleChoice", | |
"VisualBertForPreTraining", | |
"VisualBertForQuestionAnswering", | |
"VisualBertForRegionToPhraseAlignment", | |
"VisualBertForVisualReasoning", | |
"VisualBertLayer", | |
"VisualBertModel", | |
"VisualBertPreTrainedModel", | |
] | |
) | |
_import_structure["models.vit"].extend( | |
[ | |
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"ViTForImageClassification", | |
"ViTModel", | |
"ViTPreTrainedModel", | |
] | |
) | |
_import_structure["models.wav2vec2"].extend( | |
[ | |
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"Wav2Vec2ForCTC", | |
"Wav2Vec2ForMaskedLM", | |
"Wav2Vec2ForPreTraining", | |
"Wav2Vec2Model", | |
"Wav2Vec2PreTrainedModel", | |
] | |
) | |
_import_structure["models.xlm"].extend( | |
[ | |
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"XLMForMultipleChoice", | |
"XLMForQuestionAnswering", | |
"XLMForQuestionAnsweringSimple", | |
"XLMForSequenceClassification", | |
"XLMForTokenClassification", | |
"XLMModel", | |
"XLMPreTrainedModel", | |
"XLMWithLMHeadModel", | |
] | |
) | |
_import_structure["models.xlm_prophetnet"].extend( | |
[ | |
"XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"XLMProphetNetDecoder", | |
"XLMProphetNetEncoder", | |
"XLMProphetNetForCausalLM", | |
"XLMProphetNetForConditionalGeneration", | |
"XLMProphetNetModel", | |
] | |
) | |
_import_structure["models.xlm_roberta"].extend( | |
[ | |
"XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"XLMRobertaForCausalLM", | |
"XLMRobertaForMaskedLM", | |
"XLMRobertaForMultipleChoice", | |
"XLMRobertaForQuestionAnswering", | |
"XLMRobertaForSequenceClassification", | |
"XLMRobertaForTokenClassification", | |
"XLMRobertaModel", | |
] | |
) | |
_import_structure["models.xlnet"].extend( | |
[ | |
"XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"XLNetForMultipleChoice", | |
"XLNetForQuestionAnswering", | |
"XLNetForQuestionAnsweringSimple", | |
"XLNetForSequenceClassification", | |
"XLNetForTokenClassification", | |
"XLNetLMHeadModel", | |
"XLNetModel", | |
"XLNetPreTrainedModel", | |
"load_tf_weights_in_xlnet", | |
] | |
) | |
_import_structure["optimization"] = [ | |
"Adafactor", | |
"AdamW", | |
"get_constant_schedule", | |
"get_constant_schedule_with_warmup", | |
"get_cosine_schedule_with_warmup", | |
"get_cosine_with_hard_restarts_schedule_with_warmup", | |
"get_linear_schedule_with_warmup", | |
"get_polynomial_decay_schedule_with_warmup", | |
"get_scheduler", | |
] | |
_import_structure["trainer"] = ["Trainer"] | |
_import_structure["trainer_pt_utils"] = ["torch_distributed_zero_first"] | |
_import_structure["trainer_seq2seq"] = ["Seq2SeqTrainer"] | |
else: | |
from .utils import dummy_pt_objects | |
_import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")] | |
# TensorFlow-backed objects | |
if is_tf_available(): | |
_import_structure["benchmark.benchmark_args_tf"] = ["TensorFlowBenchmarkArguments"] | |
_import_structure["benchmark.benchmark_tf"] = ["TensorFlowBenchmark"] | |
_import_structure["generation_tf_utils"] = ["tf_top_k_top_p_filtering"] | |
_import_structure["modeling_tf_utils"] = [ | |
"TFPreTrainedModel", | |
"TFSequenceSummary", | |
"TFSharedEmbeddings", | |
"shape_list", | |
] | |
# TensorFlow models structure | |
_import_structure["models.albert"].extend( | |
[ | |
"TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFAlbertForMaskedLM", | |
"TFAlbertForMultipleChoice", | |
"TFAlbertForPreTraining", | |
"TFAlbertForQuestionAnswering", | |
"TFAlbertForSequenceClassification", | |
"TFAlbertForTokenClassification", | |
"TFAlbertMainLayer", | |
"TFAlbertModel", | |
"TFAlbertPreTrainedModel", | |
] | |
) | |
_import_structure["models.auto"].extend( | |
[ | |
"TF_MODEL_FOR_CAUSAL_LM_MAPPING", | |
"TF_MODEL_FOR_MASKED_LM_MAPPING", | |
"TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING", | |
"TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING", | |
"TF_MODEL_FOR_PRETRAINING_MAPPING", | |
"TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING", | |
"TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", | |
"TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", | |
"TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", | |
"TF_MODEL_MAPPING", | |
"TF_MODEL_WITH_LM_HEAD_MAPPING", | |
"TFAutoModel", | |
"TFAutoModelForCausalLM", | |
"TFAutoModelForMaskedLM", | |
"TFAutoModelForMultipleChoice", | |
"TFAutoModelForPreTraining", | |
"TFAutoModelForQuestionAnswering", | |
"TFAutoModelForSeq2SeqLM", | |
"TFAutoModelForSequenceClassification", | |
"TFAutoModelForTokenClassification", | |
"TFAutoModelWithLMHead", | |
] | |
) | |
_import_structure["models.bart"].extend(["TFBartForConditionalGeneration", "TFBartModel", "TFBartPretrainedModel"]) | |
_import_structure["models.bert"].extend( | |
[ | |
"TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFBertEmbeddings", | |
"TFBertForMaskedLM", | |
"TFBertForMultipleChoice", | |
"TFBertForNextSentencePrediction", | |
"TFBertForPreTraining", | |
"TFBertForQuestionAnswering", | |
"TFBertForSequenceClassification", | |
"TFBertForTokenClassification", | |
"TFBertLMHeadModel", | |
"TFBertMainLayer", | |
"TFBertModel", | |
"TFBertPreTrainedModel", | |
] | |
) | |
_import_structure["models.blenderbot"].extend( | |
["TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel"] | |
) | |
_import_structure["models.blenderbot_small"].extend( | |
["TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel"] | |
) | |
_import_structure["models.camembert"].extend( | |
[ | |
"TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFCamembertForMaskedLM", | |
"TFCamembertForMultipleChoice", | |
"TFCamembertForQuestionAnswering", | |
"TFCamembertForSequenceClassification", | |
"TFCamembertForTokenClassification", | |
"TFCamembertModel", | |
] | |
) | |
_import_structure["models.convbert"].extend( | |
[ | |
"TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFConvBertForMaskedLM", | |
"TFConvBertForMultipleChoice", | |
"TFConvBertForQuestionAnswering", | |
"TFConvBertForSequenceClassification", | |
"TFConvBertForTokenClassification", | |
"TFConvBertLayer", | |
"TFConvBertModel", | |
"TFConvBertPreTrainedModel", | |
] | |
) | |
_import_structure["models.ctrl"].extend( | |
[ | |
"TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFCTRLForSequenceClassification", | |
"TFCTRLLMHeadModel", | |
"TFCTRLModel", | |
"TFCTRLPreTrainedModel", | |
] | |
) | |
_import_structure["models.distilbert"].extend( | |
[ | |
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFDistilBertForMaskedLM", | |
"TFDistilBertForMultipleChoice", | |
"TFDistilBertForQuestionAnswering", | |
"TFDistilBertForSequenceClassification", | |
"TFDistilBertForTokenClassification", | |
"TFDistilBertMainLayer", | |
"TFDistilBertModel", | |
"TFDistilBertPreTrainedModel", | |
] | |
) | |
_import_structure["models.dpr"].extend( | |
[ | |
"TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFDPRContextEncoder", | |
"TFDPRPretrainedContextEncoder", | |
"TFDPRPretrainedQuestionEncoder", | |
"TFDPRPretrainedReader", | |
"TFDPRQuestionEncoder", | |
"TFDPRReader", | |
] | |
) | |
_import_structure["models.electra"].extend( | |
[ | |
"TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFElectraForMaskedLM", | |
"TFElectraForMultipleChoice", | |
"TFElectraForPreTraining", | |
"TFElectraForQuestionAnswering", | |
"TFElectraForSequenceClassification", | |
"TFElectraForTokenClassification", | |
"TFElectraModel", | |
"TFElectraPreTrainedModel", | |
] | |
) | |
_import_structure["models.flaubert"].extend( | |
[ | |
"TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFFlaubertForMultipleChoice", | |
"TFFlaubertForQuestionAnsweringSimple", | |
"TFFlaubertForSequenceClassification", | |
"TFFlaubertForTokenClassification", | |
"TFFlaubertModel", | |
"TFFlaubertPreTrainedModel", | |
"TFFlaubertWithLMHeadModel", | |
] | |
) | |
_import_structure["models.funnel"].extend( | |
[ | |
"TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFFunnelBaseModel", | |
"TFFunnelForMaskedLM", | |
"TFFunnelForMultipleChoice", | |
"TFFunnelForPreTraining", | |
"TFFunnelForQuestionAnswering", | |
"TFFunnelForSequenceClassification", | |
"TFFunnelForTokenClassification", | |
"TFFunnelModel", | |
"TFFunnelPreTrainedModel", | |
] | |
) | |
_import_structure["models.gpt2"].extend( | |
[ | |
"TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFGPT2DoubleHeadsModel", | |
"TFGPT2ForSequenceClassification", | |
"TFGPT2LMHeadModel", | |
"TFGPT2MainLayer", | |
"TFGPT2Model", | |
"TFGPT2PreTrainedModel", | |
] | |
) | |
_import_structure["models.hubert"].extend( | |
[ | |
"TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFHubertForCTC", | |
"TFHubertModel", | |
"TFHubertPreTrainedModel", | |
] | |
) | |
_import_structure["models.layoutlm"].extend( | |
[ | |
"TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFLayoutLMForMaskedLM", | |
"TFLayoutLMForSequenceClassification", | |
"TFLayoutLMForTokenClassification", | |
"TFLayoutLMMainLayer", | |
"TFLayoutLMModel", | |
"TFLayoutLMPreTrainedModel", | |
] | |
) | |
_import_structure["models.led"].extend(["TFLEDForConditionalGeneration", "TFLEDModel", "TFLEDPreTrainedModel"]) | |
_import_structure["models.longformer"].extend( | |
[ | |
"TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFLongformerForMaskedLM", | |
"TFLongformerForMultipleChoice", | |
"TFLongformerForQuestionAnswering", | |
"TFLongformerForSequenceClassification", | |
"TFLongformerForTokenClassification", | |
"TFLongformerModel", | |
"TFLongformerPreTrainedModel", | |
"TFLongformerSelfAttention", | |
] | |
) | |
_import_structure["models.lxmert"].extend( | |
[ | |
"TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFLxmertForPreTraining", | |
"TFLxmertMainLayer", | |
"TFLxmertModel", | |
"TFLxmertPreTrainedModel", | |
"TFLxmertVisualFeatureEncoder", | |
] | |
) | |
_import_structure["models.marian"].extend(["TFMarianModel", "TFMarianMTModel", "TFMarianPreTrainedModel"]) | |
_import_structure["models.mbart"].extend( | |
["TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel"] | |
) | |
_import_structure["models.mobilebert"].extend( | |
[ | |
"TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFMobileBertForMaskedLM", | |
"TFMobileBertForMultipleChoice", | |
"TFMobileBertForNextSentencePrediction", | |
"TFMobileBertForPreTraining", | |
"TFMobileBertForQuestionAnswering", | |
"TFMobileBertForSequenceClassification", | |
"TFMobileBertForTokenClassification", | |
"TFMobileBertMainLayer", | |
"TFMobileBertModel", | |
"TFMobileBertPreTrainedModel", | |
] | |
) | |
_import_structure["models.mpnet"].extend( | |
[ | |
"TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFMPNetForMaskedLM", | |
"TFMPNetForMultipleChoice", | |
"TFMPNetForQuestionAnswering", | |
"TFMPNetForSequenceClassification", | |
"TFMPNetForTokenClassification", | |
"TFMPNetMainLayer", | |
"TFMPNetModel", | |
"TFMPNetPreTrainedModel", | |
] | |
) | |
_import_structure["models.mt5"].extend(["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]) | |
_import_structure["models.openai"].extend( | |
[ | |
"TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFOpenAIGPTDoubleHeadsModel", | |
"TFOpenAIGPTForSequenceClassification", | |
"TFOpenAIGPTLMHeadModel", | |
"TFOpenAIGPTMainLayer", | |
"TFOpenAIGPTModel", | |
"TFOpenAIGPTPreTrainedModel", | |
] | |
) | |
_import_structure["models.pegasus"].extend( | |
["TFPegasusForConditionalGeneration", "TFPegasusModel", "TFPegasusPreTrainedModel"] | |
) | |
_import_structure["models.rag"].extend( | |
[ | |
"TFRagModel", | |
"TFRagPreTrainedModel", | |
"TFRagSequenceForGeneration", | |
"TFRagTokenForGeneration", | |
] | |
) | |
_import_structure["models.roberta"].extend( | |
[ | |
"TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFRobertaForMaskedLM", | |
"TFRobertaForMultipleChoice", | |
"TFRobertaForQuestionAnswering", | |
"TFRobertaForSequenceClassification", | |
"TFRobertaForTokenClassification", | |
"TFRobertaMainLayer", | |
"TFRobertaModel", | |
"TFRobertaPreTrainedModel", | |
] | |
) | |
_import_structure["models.roformer"].extend( | |
[ | |
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFRoFormerForCausalLM", | |
"TFRoFormerForMaskedLM", | |
"TFRoFormerForMultipleChoice", | |
"TFRoFormerForQuestionAnswering", | |
"TFRoFormerForSequenceClassification", | |
"TFRoFormerForTokenClassification", | |
"TFRoFormerLayer", | |
"TFRoFormerModel", | |
"TFRoFormerPreTrainedModel", | |
] | |
) | |
_import_structure["models.t5"].extend( | |
[ | |
"TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFT5EncoderModel", | |
"TFT5ForConditionalGeneration", | |
"TFT5Model", | |
"TFT5PreTrainedModel", | |
] | |
) | |
_import_structure["models.transfo_xl"].extend( | |
[ | |
"TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFAdaptiveEmbedding", | |
"TFTransfoXLForSequenceClassification", | |
"TFTransfoXLLMHeadModel", | |
"TFTransfoXLMainLayer", | |
"TFTransfoXLModel", | |
"TFTransfoXLPreTrainedModel", | |
] | |
) | |
_import_structure["models.wav2vec2"].extend( | |
[ | |
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFWav2Vec2ForCTC", | |
"TFWav2Vec2Model", | |
"TFWav2Vec2PreTrainedModel", | |
] | |
) | |
_import_structure["models.xlm"].extend( | |
[ | |
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFXLMForMultipleChoice", | |
"TFXLMForQuestionAnsweringSimple", | |
"TFXLMForSequenceClassification", | |
"TFXLMForTokenClassification", | |
"TFXLMMainLayer", | |
"TFXLMModel", | |
"TFXLMPreTrainedModel", | |
"TFXLMWithLMHeadModel", | |
] | |
) | |
_import_structure["models.xlm_roberta"].extend( | |
[ | |
"TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFXLMRobertaForMaskedLM", | |
"TFXLMRobertaForMultipleChoice", | |
"TFXLMRobertaForQuestionAnswering", | |
"TFXLMRobertaForSequenceClassification", | |
"TFXLMRobertaForTokenClassification", | |
"TFXLMRobertaModel", | |
] | |
) | |
_import_structure["models.xlnet"].extend( | |
[ | |
"TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFXLNetForMultipleChoice", | |
"TFXLNetForQuestionAnsweringSimple", | |
"TFXLNetForSequenceClassification", | |
"TFXLNetForTokenClassification", | |
"TFXLNetLMHeadModel", | |
"TFXLNetMainLayer", | |
"TFXLNetModel", | |
"TFXLNetPreTrainedModel", | |
] | |
) | |
_import_structure["optimization_tf"] = ["AdamWeightDecay", "GradientAccumulator", "WarmUp", "create_optimizer"] | |
_import_structure["trainer_tf"] = ["TFTrainer"] | |
else: | |
from .utils import dummy_tf_objects | |
_import_structure["utils.dummy_tf_objects"] = [name for name in dir(dummy_tf_objects) if not name.startswith("_")] | |
# FLAX-backed objects | |
if is_flax_available(): | |
_import_structure["generation_flax_logits_process"] = [ | |
"FlaxForcedBOSTokenLogitsProcessor", | |
"FlaxForcedEOSTokenLogitsProcessor", | |
"FlaxLogitsProcessor", | |
"FlaxLogitsProcessorList", | |
"FlaxLogitsWarper", | |
"FlaxMinLengthLogitsProcessor", | |
"FlaxTemperatureLogitsWarper", | |
"FlaxTopKLogitsWarper", | |
"FlaxTopPLogitsWarper", | |
] | |
_import_structure["modeling_flax_utils"] = ["FlaxPreTrainedModel"] | |
_import_structure["models.auto"].extend( | |
[ | |
"FLAX_MODEL_FOR_CAUSAL_LM_MAPPING", | |
"FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING", | |
"FLAX_MODEL_FOR_MASKED_LM_MAPPING", | |
"FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING", | |
"FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING", | |
"FLAX_MODEL_FOR_PRETRAINING_MAPPING", | |
"FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING", | |
"FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", | |
"FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", | |
"FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", | |
"FLAX_MODEL_MAPPING", | |
"FlaxAutoModel", | |
"FlaxAutoModelForCausalLM", | |
"FlaxAutoModelForImageClassification", | |
"FlaxAutoModelForMaskedLM", | |
"FlaxAutoModelForMultipleChoice", | |
"FlaxAutoModelForNextSentencePrediction", | |
"FlaxAutoModelForPreTraining", | |
"FlaxAutoModelForQuestionAnswering", | |
"FlaxAutoModelForSeq2SeqLM", | |
"FlaxAutoModelForSequenceClassification", | |
"FlaxAutoModelForTokenClassification", | |
] | |
) | |
_import_structure["models.bart"].extend( | |
[ | |
"FlaxBartForConditionalGeneration", | |
"FlaxBartForQuestionAnswering", | |
"FlaxBartForSequenceClassification", | |
"FlaxBartModel", | |
"FlaxBartPreTrainedModel", | |
] | |
) | |
_import_structure["models.bert"].extend( | |
[ | |
"FlaxBertForMaskedLM", | |
"FlaxBertForMultipleChoice", | |
"FlaxBertForNextSentencePrediction", | |
"FlaxBertForPreTraining", | |
"FlaxBertForQuestionAnswering", | |
"FlaxBertForSequenceClassification", | |
"FlaxBertForTokenClassification", | |
"FlaxBertModel", | |
"FlaxBertPreTrainedModel", | |
] | |
) | |
_import_structure["models.big_bird"].extend( | |
[ | |
"FlaxBigBirdForMaskedLM", | |
"FlaxBigBirdForMultipleChoice", | |
"FlaxBigBirdForPreTraining", | |
"FlaxBigBirdForQuestionAnswering", | |
"FlaxBigBirdForSequenceClassification", | |
"FlaxBigBirdForTokenClassification", | |
"FlaxBigBirdModel", | |
"FlaxBigBirdPreTrainedModel", | |
] | |
) | |
_import_structure["models.clip"].extend( | |
[ | |
"FlaxCLIPModel", | |
"FlaxCLIPPreTrainedModel", | |
"FlaxCLIPTextModel", | |
"FlaxCLIPTextPreTrainedModel", | |
"FlaxCLIPVisionModel", | |
"FlaxCLIPVisionPreTrainedModel", | |
] | |
) | |
_import_structure["models.electra"].extend( | |
[ | |
"FlaxElectraForMaskedLM", | |
"FlaxElectraForMultipleChoice", | |
"FlaxElectraForPreTraining", | |
"FlaxElectraForQuestionAnswering", | |
"FlaxElectraForSequenceClassification", | |
"FlaxElectraForTokenClassification", | |
"FlaxElectraModel", | |
"FlaxElectraPreTrainedModel", | |
] | |
) | |
_import_structure["models.gpt2"].extend(["FlaxGPT2LMHeadModel", "FlaxGPT2Model", "FlaxGPT2PreTrainedModel"]) | |
_import_structure["models.gpt_neo"].extend( | |
["FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel"] | |
) | |
_import_structure["models.marian"].extend( | |
[ | |
"FlaxMarianModel", | |
"FlaxMarianMTModel", | |
"FlaxMarianPreTrainedModel", | |
] | |
) | |
_import_structure["models.mbart"].extend( | |
[ | |
"FlaxMBartForConditionalGeneration", | |
"FlaxMBartForQuestionAnswering", | |
"FlaxMBartForSequenceClassification", | |
"FlaxMBartModel", | |
"FlaxMBartPreTrainedModel", | |
] | |
) | |
_import_structure["models.roberta"].extend( | |
[ | |
"FlaxRobertaForMaskedLM", | |
"FlaxRobertaForMultipleChoice", | |
"FlaxRobertaForQuestionAnswering", | |
"FlaxRobertaForSequenceClassification", | |
"FlaxRobertaForTokenClassification", | |
"FlaxRobertaModel", | |
"FlaxRobertaPreTrainedModel", | |
] | |
) | |
_import_structure["models.t5"].extend(["FlaxT5ForConditionalGeneration", "FlaxT5Model", "FlaxT5PreTrainedModel"]) | |
_import_structure["models.vit"].extend(["FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel"]) | |
_import_structure["models.wav2vec2"].extend( | |
["FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel"] | |
) | |
else: | |
from .utils import dummy_flax_objects | |
_import_structure["utils.dummy_flax_objects"] = [ | |
name for name in dir(dummy_flax_objects) if not name.startswith("_") | |
] | |
# Direct imports for type-checking | |
if TYPE_CHECKING: | |
# Configuration | |
from .configuration_utils import PretrainedConfig | |
# Data | |
from .data import ( | |
DataProcessor, | |
InputExample, | |
InputFeatures, | |
SingleSentenceClassificationProcessor, | |
SquadExample, | |
SquadFeatures, | |
SquadV1Processor, | |
SquadV2Processor, | |
glue_compute_metrics, | |
glue_convert_examples_to_features, | |
glue_output_modes, | |
glue_processors, | |
glue_tasks_num_labels, | |
squad_convert_examples_to_features, | |
xnli_compute_metrics, | |
xnli_output_modes, | |
xnli_processors, | |
xnli_tasks_num_labels, | |
) | |
# Feature Extractor | |
from .feature_extraction_utils import BatchFeature, SequenceFeatureExtractor | |
# Files and general utilities | |
from .file_utils import ( | |
CONFIG_NAME, | |
MODEL_CARD_NAME, | |
PYTORCH_PRETRAINED_BERT_CACHE, | |
PYTORCH_TRANSFORMERS_CACHE, | |
SPIECE_UNDERLINE, | |
TF2_WEIGHTS_NAME, | |
TF_WEIGHTS_NAME, | |
TRANSFORMERS_CACHE, | |
WEIGHTS_NAME, | |
TensorType, | |
add_end_docstrings, | |
add_start_docstrings, | |
cached_path, | |
is_apex_available, | |
is_datasets_available, | |
is_faiss_available, | |
is_flax_available, | |
is_psutil_available, | |
is_py3nvml_available, | |
is_scipy_available, | |
is_sentencepiece_available, | |
is_sklearn_available, | |
is_speech_available, | |
is_tf_available, | |
is_timm_available, | |
is_tokenizers_available, | |
is_torch_available, | |
is_torch_tpu_available, | |
is_vision_available, | |
) | |
from .hf_argparser import HfArgumentParser | |
# Integrations | |
from .integrations import ( | |
is_comet_available, | |
is_optuna_available, | |
is_ray_available, | |
is_ray_tune_available, | |
is_tensorboard_available, | |
is_wandb_available, | |
) | |
# Model Cards | |
from .modelcard import ModelCard | |
# TF 2.0 <=> PyTorch conversion utilities | |
from .modeling_tf_pytorch_utils import ( | |
convert_tf_weight_name_to_pt_weight_name, | |
load_pytorch_checkpoint_in_tf2_model, | |
load_pytorch_model_in_tf2_model, | |
load_pytorch_weights_in_tf2_model, | |
load_tf2_checkpoint_in_pytorch_model, | |
load_tf2_model_in_pytorch_model, | |
load_tf2_weights_in_pytorch_model, | |
) | |
from .models.albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig | |
from .models.auto import ( | |
ALL_PRETRAINED_CONFIG_ARCHIVE_MAP, | |
CONFIG_MAPPING, | |
FEATURE_EXTRACTOR_MAPPING, | |
MODEL_NAMES_MAPPING, | |
TOKENIZER_MAPPING, | |
AutoConfig, | |
AutoFeatureExtractor, | |
AutoTokenizer, | |
) | |
from .models.bart import BartConfig, BartTokenizer | |
from .models.bert import ( | |
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, | |
BasicTokenizer, | |
BertConfig, | |
BertTokenizer, | |
WordpieceTokenizer, | |
) | |
from .models.bert_generation import BertGenerationConfig | |
from .models.bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer | |
from .models.bertweet import BertweetTokenizer | |
from .models.big_bird import BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdConfig, BigBirdTokenizer | |
from .models.bigbird_pegasus import BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig | |
from .models.blenderbot import BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotTokenizer | |
from .models.blenderbot_small import ( | |
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, | |
BlenderbotSmallConfig, | |
BlenderbotSmallTokenizer, | |
) | |
from .models.byt5 import ByT5Tokenizer | |
from .models.camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig | |
from .models.canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig, CanineTokenizer | |
from .models.clip import ( | |
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, | |
CLIPConfig, | |
CLIPTextConfig, | |
CLIPTokenizer, | |
CLIPVisionConfig, | |
) | |
from .models.convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertTokenizer | |
from .models.cpm import CpmTokenizer | |
from .models.ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig, CTRLTokenizer | |
from .models.deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaTokenizer | |
from .models.deberta_v2 import DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaV2Config | |
from .models.deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig | |
from .models.detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig | |
from .models.distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertTokenizer | |
from .models.dpr import ( | |
DPR_PRETRAINED_CONFIG_ARCHIVE_MAP, | |
DPRConfig, | |
DPRContextEncoderTokenizer, | |
DPRQuestionEncoderTokenizer, | |
DPRReaderOutput, | |
DPRReaderTokenizer, | |
) | |
from .models.electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraTokenizer | |
from .models.encoder_decoder import EncoderDecoderConfig | |
from .models.flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig, FlaubertTokenizer | |
from .models.fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig, FSMTTokenizer | |
from .models.funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig, FunnelTokenizer | |
from .models.gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2Tokenizer | |
from .models.gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig | |
from .models.herbert import HerbertTokenizer | |
from .models.hubert import HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, HubertConfig | |
from .models.ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig | |
from .models.layoutlm import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMConfig, LayoutLMTokenizer | |
from .models.led import LED_PRETRAINED_CONFIG_ARCHIVE_MAP, LEDConfig, LEDTokenizer | |
from .models.longformer import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerTokenizer | |
from .models.luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig, LukeTokenizer | |
from .models.lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig, LxmertTokenizer | |
from .models.m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config | |
from .models.marian import MarianConfig | |
from .models.mbart import MBartConfig | |
from .models.megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig | |
from .models.mmbt import MMBTConfig | |
from .models.mobilebert import MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertTokenizer | |
from .models.mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig, MPNetTokenizer | |
from .models.mt5 import MT5Config | |
from .models.openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig, OpenAIGPTTokenizer | |
from .models.pegasus import PegasusConfig | |
from .models.phobert import PhobertTokenizer | |
from .models.prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig, ProphetNetTokenizer | |
from .models.rag import RagConfig, RagRetriever, RagTokenizer | |
from .models.reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig | |
from .models.retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig, RetriBertTokenizer | |
from .models.roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaTokenizer | |
from .models.roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerTokenizer | |
from .models.speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, Speech2TextConfig | |
from .models.squeezebert import SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertTokenizer | |
from .models.t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config | |
from .models.tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig, TapasTokenizer | |
from .models.transfo_xl import ( | |
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, | |
TransfoXLConfig, | |
TransfoXLCorpus, | |
TransfoXLTokenizer, | |
) | |
from .models.visual_bert import VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, VisualBertConfig | |
from .models.vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig | |
from .models.wav2vec2 import ( | |
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, | |
Wav2Vec2Config, | |
Wav2Vec2CTCTokenizer, | |
Wav2Vec2FeatureExtractor, | |
Wav2Vec2Processor, | |
Wav2Vec2Tokenizer, | |
) | |
from .models.xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMTokenizer | |
from .models.xlm_prophetnet import XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMProphetNetConfig | |
from .models.xlm_roberta import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig | |
from .models.xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig | |
# Pipelines | |
from .pipelines import ( | |
AutomaticSpeechRecognitionPipeline, | |
Conversation, | |
ConversationalPipeline, | |
CsvPipelineDataFormat, | |
FeatureExtractionPipeline, | |
FillMaskPipeline, | |
ImageClassificationPipeline, | |
JsonPipelineDataFormat, | |
NerPipeline, | |
PipedPipelineDataFormat, | |
Pipeline, | |
PipelineDataFormat, | |
QuestionAnsweringPipeline, | |
SummarizationPipeline, | |
TableQuestionAnsweringPipeline, | |
Text2TextGenerationPipeline, | |
TextClassificationPipeline, | |
TextGenerationPipeline, | |
TokenClassificationPipeline, | |
TranslationPipeline, | |
ZeroShotClassificationPipeline, | |
pipeline, | |
) | |
# Tokenization | |
from .tokenization_utils import PreTrainedTokenizer | |
from .tokenization_utils_base import ( | |
AddedToken, | |
BatchEncoding, | |
CharSpan, | |
PreTrainedTokenizerBase, | |
SpecialTokensMixin, | |
TokenSpan, | |
) | |
# Trainer | |
from .trainer_callback import ( | |
DefaultFlowCallback, | |
EarlyStoppingCallback, | |
PrinterCallback, | |
ProgressCallback, | |
TrainerCallback, | |
TrainerControl, | |
TrainerState, | |
) | |
from .trainer_utils import EvalPrediction, IntervalStrategy, SchedulerType, set_seed | |
from .training_args import TrainingArguments | |
from .training_args_seq2seq import Seq2SeqTrainingArguments | |
from .training_args_tf import TFTrainingArguments | |
from .utils import logging | |
if is_sentencepiece_available(): | |
from .models.albert import AlbertTokenizer | |
from .models.barthez import BarthezTokenizer | |
from .models.bert_generation import BertGenerationTokenizer | |
from .models.camembert import CamembertTokenizer | |
from .models.deberta_v2 import DebertaV2Tokenizer | |
from .models.m2m_100 import M2M100Tokenizer | |
from .models.marian import MarianTokenizer | |
from .models.mbart import MBart50Tokenizer, MBartTokenizer | |
from .models.mt5 import MT5Tokenizer | |
from .models.pegasus import PegasusTokenizer | |
from .models.reformer import ReformerTokenizer | |
from .models.speech_to_text import Speech2TextTokenizer | |
from .models.t5 import T5Tokenizer | |
from .models.xlm_prophetnet import XLMProphetNetTokenizer | |
from .models.xlm_roberta import XLMRobertaTokenizer | |
from .models.xlnet import XLNetTokenizer | |
else: | |
from .utils.dummy_sentencepiece_objects import * | |
if is_tokenizers_available(): | |
from .models.albert import AlbertTokenizerFast | |
from .models.bart import BartTokenizerFast | |
from .models.barthez import BarthezTokenizerFast | |
from .models.bert import BertTokenizerFast | |
from .models.big_bird import BigBirdTokenizerFast | |
from .models.camembert import CamembertTokenizerFast | |
from .models.clip import CLIPTokenizerFast | |
from .models.convbert import ConvBertTokenizerFast | |
from .models.deberta import DebertaTokenizerFast | |
from .models.distilbert import DistilBertTokenizerFast | |
from .models.dpr import DPRContextEncoderTokenizerFast, DPRQuestionEncoderTokenizerFast, DPRReaderTokenizerFast | |
from .models.electra import ElectraTokenizerFast | |
from .models.funnel import FunnelTokenizerFast | |
from .models.gpt2 import GPT2TokenizerFast | |
from .models.herbert import HerbertTokenizerFast | |
from .models.layoutlm import LayoutLMTokenizerFast | |
from .models.led import LEDTokenizerFast | |
from .models.longformer import LongformerTokenizerFast | |
from .models.lxmert import LxmertTokenizerFast | |
from .models.mbart import MBart50TokenizerFast, MBartTokenizerFast | |
from .models.mobilebert import MobileBertTokenizerFast | |
from .models.mpnet import MPNetTokenizerFast | |
from .models.mt5 import MT5TokenizerFast | |
from .models.openai import OpenAIGPTTokenizerFast | |
from .models.pegasus import PegasusTokenizerFast | |
from .models.reformer import ReformerTokenizerFast | |
from .models.retribert import RetriBertTokenizerFast | |
from .models.roberta import RobertaTokenizerFast | |
from .models.roformer import RoFormerTokenizerFast | |
from .models.squeezebert import SqueezeBertTokenizerFast | |
from .models.t5 import T5TokenizerFast | |
from .models.xlm_roberta import XLMRobertaTokenizerFast | |
from .models.xlnet import XLNetTokenizerFast | |
from .tokenization_utils_fast import PreTrainedTokenizerFast | |
else: | |
from .utils.dummy_tokenizers_objects import * | |
if is_sentencepiece_available() and is_tokenizers_available(): | |
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS, convert_slow_tokenizer | |
else: | |
from .utils.dummies_sentencepiece_and_tokenizers_objects import * | |
if is_speech_available(): | |
from .models.speech_to_text import Speech2TextFeatureExtractor | |
else: | |
from .utils.dummy_speech_objects import * | |
if is_speech_available() and is_sentencepiece_available(): | |
from .models.speech_to_text import Speech2TextProcessor | |
else: | |
from .utils.dummy_sentencepiece_and_speech_objects import * | |
if is_vision_available(): | |
from .image_utils import ImageFeatureExtractionMixin | |
from .models.clip import CLIPFeatureExtractor, CLIPProcessor | |
from .models.deit import DeiTFeatureExtractor | |
from .models.detr import DetrFeatureExtractor | |
from .models.vit import ViTFeatureExtractor | |
else: | |
from .utils.dummy_vision_objects import * | |
# Modeling | |
if is_timm_available() and is_vision_available(): | |
from .models.detr import ( | |
DETR_PRETRAINED_MODEL_ARCHIVE_LIST, | |
DetrForObjectDetection, | |
DetrForSegmentation, | |
DetrModel, | |
DetrPreTrainedModel, | |
) | |
else: | |
from .utils.dummy_timm_objects import * | |
if is_torch_available(): | |
# Benchmarks | |
from .benchmark.benchmark import PyTorchBenchmark | |
from .benchmark.benchmark_args import PyTorchBenchmarkArguments | |
from .data.data_collator import ( | |
DataCollator, | |
DataCollatorForLanguageModeling, | |
DataCollatorForPermutationLanguageModeling, | |
DataCollatorForSeq2Seq, | |
DataCollatorForSOP, | |
DataCollatorForTokenClassification, | |
DataCollatorForWholeWordMask, | |
DataCollatorWithPadding, | |
default_data_collator, | |
) | |
from .data.datasets import ( | |
GlueDataset, | |
GlueDataTrainingArguments, | |
LineByLineTextDataset, | |
LineByLineWithRefDataset, | |
LineByLineWithSOPTextDataset, | |
SquadDataset, | |
SquadDataTrainingArguments, | |
TextDataset, | |
TextDatasetForNextSentencePrediction, | |
) | |
from .generation_beam_search import BeamScorer, BeamSearchScorer | |
from .generation_logits_process import ( | |
ForcedBOSTokenLogitsProcessor, | |
ForcedEOSTokenLogitsProcessor, | |
HammingDiversityLogitsProcessor, | |
InfNanRemoveLogitsProcessor, | |
LogitsProcessor, | |
LogitsProcessorList, | |
LogitsWarper, | |
MinLengthLogitsProcessor, | |
NoBadWordsLogitsProcessor, | |
NoRepeatNGramLogitsProcessor, | |
PrefixConstrainedLogitsProcessor, | |
RepetitionPenaltyLogitsProcessor, | |
TemperatureLogitsWarper, | |
TopKLogitsWarper, | |
TopPLogitsWarper, | |
) | |
from .generation_stopping_criteria import ( | |
MaxLengthCriteria, | |
MaxTimeCriteria, | |
StoppingCriteria, | |
StoppingCriteriaList, | |
) | |
from .generation_utils import top_k_top_p_filtering | |
from .modeling_utils import Conv1D, PreTrainedModel, apply_chunking_to_forward, prune_layer | |
from .models.albert import ( | |
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
AlbertForMaskedLM, | |
AlbertForMultipleChoice, | |
AlbertForPreTraining, | |
AlbertForQuestionAnswering, | |
AlbertForSequenceClassification, | |
AlbertForTokenClassification, | |
AlbertModel, | |
AlbertPreTrainedModel, | |
load_tf_weights_in_albert, | |
) | |
from .models.auto import ( | |
MODEL_FOR_CAUSAL_LM_MAPPING, | |
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, | |
MODEL_FOR_MASKED_LM_MAPPING, | |
MODEL_FOR_MULTIPLE_CHOICE_MAPPING, | |
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, | |
MODEL_FOR_OBJECT_DETECTION_MAPPING, | |
MODEL_FOR_PRETRAINING_MAPPING, | |
MODEL_FOR_QUESTION_ANSWERING_MAPPING, | |
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, | |
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING, | |
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, | |
MODEL_MAPPING, | |
MODEL_WITH_LM_HEAD_MAPPING, | |
AutoModel, | |
AutoModelForCausalLM, | |
AutoModelForImageClassification, | |
AutoModelForMaskedLM, | |
AutoModelForMultipleChoice, | |
AutoModelForNextSentencePrediction, | |
AutoModelForPreTraining, | |
AutoModelForQuestionAnswering, | |
AutoModelForSeq2SeqLM, | |
AutoModelForSequenceClassification, | |
AutoModelForTableQuestionAnswering, | |
AutoModelForTokenClassification, | |
AutoModelWithLMHead, | |
) | |
from .models.bart import ( | |
BART_PRETRAINED_MODEL_ARCHIVE_LIST, | |
BartForCausalLM, | |
BartForConditionalGeneration, | |
BartForQuestionAnswering, | |
BartForSequenceClassification, | |
BartModel, | |
BartPretrainedModel, | |
PretrainedBartModel, | |
) | |
from .models.bert import ( | |
BERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
BertForMaskedLM, | |
BertForMultipleChoice, | |
BertForNextSentencePrediction, | |
BertForPreTraining, | |
BertForQuestionAnswering, | |
BertForSequenceClassification, | |
BertForTokenClassification, | |
BertLayer, | |
BertLMHeadModel, | |
BertModel, | |
BertPreTrainedModel, | |
load_tf_weights_in_bert, | |
) | |
from .models.bert_generation import ( | |
BertGenerationDecoder, | |
BertGenerationEncoder, | |
BertGenerationPreTrainedModel, | |
load_tf_weights_in_bert_generation, | |
) | |
from .models.big_bird import ( | |
BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST, | |
BigBirdForCausalLM, | |
BigBirdForMaskedLM, | |
BigBirdForMultipleChoice, | |
BigBirdForPreTraining, | |
BigBirdForQuestionAnswering, | |
BigBirdForSequenceClassification, | |
BigBirdForTokenClassification, | |
BigBirdLayer, | |
BigBirdModel, | |
BigBirdPreTrainedModel, | |
load_tf_weights_in_big_bird, | |
) | |
from .models.bigbird_pegasus import ( | |
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, | |
BigBirdPegasusForCausalLM, | |
BigBirdPegasusForConditionalGeneration, | |
BigBirdPegasusForQuestionAnswering, | |
BigBirdPegasusForSequenceClassification, | |
BigBirdPegasusModel, | |
BigBirdPegasusPreTrainedModel, | |
) | |
from .models.blenderbot import ( | |
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
BlenderbotForCausalLM, | |
BlenderbotForConditionalGeneration, | |
BlenderbotModel, | |
BlenderbotPreTrainedModel, | |
) | |
from .models.blenderbot_small import ( | |
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, | |
BlenderbotSmallForCausalLM, | |
BlenderbotSmallForConditionalGeneration, | |
BlenderbotSmallModel, | |
BlenderbotSmallPreTrainedModel, | |
) | |
from .models.camembert import ( | |
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
CamembertForCausalLM, | |
CamembertForMaskedLM, | |
CamembertForMultipleChoice, | |
CamembertForQuestionAnswering, | |
CamembertForSequenceClassification, | |
CamembertForTokenClassification, | |
CamembertModel, | |
) | |
from .models.canine import ( | |
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, | |
CanineForMultipleChoice, | |
CanineForQuestionAnswering, | |
CanineForSequenceClassification, | |
CanineForTokenClassification, | |
CanineLayer, | |
CanineModel, | |
CaninePreTrainedModel, | |
load_tf_weights_in_canine, | |
) | |
from .models.clip import ( | |
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, | |
CLIPModel, | |
CLIPPreTrainedModel, | |
CLIPTextModel, | |
CLIPVisionModel, | |
) | |
from .models.convbert import ( | |
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
ConvBertForMaskedLM, | |
ConvBertForMultipleChoice, | |
ConvBertForQuestionAnswering, | |
ConvBertForSequenceClassification, | |
ConvBertForTokenClassification, | |
ConvBertLayer, | |
ConvBertModel, | |
ConvBertPreTrainedModel, | |
load_tf_weights_in_convbert, | |
) | |
from .models.ctrl import ( | |
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, | |
CTRLForSequenceClassification, | |
CTRLLMHeadModel, | |
CTRLModel, | |
CTRLPreTrainedModel, | |
) | |
from .models.deberta import ( | |
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, | |
DebertaForMaskedLM, | |
DebertaForQuestionAnswering, | |
DebertaForSequenceClassification, | |
DebertaForTokenClassification, | |
DebertaModel, | |
DebertaPreTrainedModel, | |
) | |
from .models.deberta_v2 import ( | |
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST, | |
DebertaV2ForMaskedLM, | |
DebertaV2ForQuestionAnswering, | |
DebertaV2ForSequenceClassification, | |
DebertaV2ForTokenClassification, | |
DebertaV2Model, | |
DebertaV2PreTrainedModel, | |
) | |
from .models.deit import ( | |
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
DeiTForImageClassification, | |
DeiTForImageClassificationWithTeacher, | |
DeiTModel, | |
DeiTPreTrainedModel, | |
) | |
from .models.distilbert import ( | |
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
DistilBertForMaskedLM, | |
DistilBertForMultipleChoice, | |
DistilBertForQuestionAnswering, | |
DistilBertForSequenceClassification, | |
DistilBertForTokenClassification, | |
DistilBertModel, | |
DistilBertPreTrainedModel, | |
) | |
from .models.dpr import ( | |
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
DPRContextEncoder, | |
DPRPretrainedContextEncoder, | |
DPRPretrainedQuestionEncoder, | |
DPRPretrainedReader, | |
DPRQuestionEncoder, | |
DPRReader, | |
) | |
from .models.electra import ( | |
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, | |
ElectraForMaskedLM, | |
ElectraForMultipleChoice, | |
ElectraForPreTraining, | |
ElectraForQuestionAnswering, | |
ElectraForSequenceClassification, | |
ElectraForTokenClassification, | |
ElectraModel, | |
ElectraPreTrainedModel, | |
load_tf_weights_in_electra, | |
) | |
from .models.encoder_decoder import EncoderDecoderModel | |
from .models.flaubert import ( | |
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
FlaubertForMultipleChoice, | |
FlaubertForQuestionAnswering, | |
FlaubertForQuestionAnsweringSimple, | |
FlaubertForSequenceClassification, | |
FlaubertForTokenClassification, | |
FlaubertModel, | |
FlaubertWithLMHeadModel, | |
) | |
from .models.fsmt import FSMTForConditionalGeneration, FSMTModel, PretrainedFSMTModel | |
from .models.funnel import ( | |
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, | |
FunnelBaseModel, | |
FunnelForMaskedLM, | |
FunnelForMultipleChoice, | |
FunnelForPreTraining, | |
FunnelForQuestionAnswering, | |
FunnelForSequenceClassification, | |
FunnelForTokenClassification, | |
FunnelModel, | |
FunnelPreTrainedModel, | |
load_tf_weights_in_funnel, | |
) | |
from .models.gpt2 import ( | |
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, | |
GPT2DoubleHeadsModel, | |
GPT2ForSequenceClassification, | |
GPT2LMHeadModel, | |
GPT2Model, | |
GPT2PreTrainedModel, | |
load_tf_weights_in_gpt2, | |
) | |
from .models.gpt_neo import ( | |
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, | |
GPTNeoForCausalLM, | |
GPTNeoForSequenceClassification, | |
GPTNeoModel, | |
GPTNeoPreTrainedModel, | |
load_tf_weights_in_gpt_neo, | |
) | |
from .models.hubert import ( | |
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
HubertForCTC, | |
HubertModel, | |
HubertPreTrainedModel, | |
) | |
from .models.ibert import ( | |
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
IBertForMaskedLM, | |
IBertForMultipleChoice, | |
IBertForQuestionAnswering, | |
IBertForSequenceClassification, | |
IBertForTokenClassification, | |
IBertModel, | |
IBertPreTrainedModel, | |
) | |
from .models.layoutlm import ( | |
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, | |
LayoutLMForMaskedLM, | |
LayoutLMForSequenceClassification, | |
LayoutLMForTokenClassification, | |
LayoutLMModel, | |
LayoutLMPreTrainedModel, | |
) | |
from .models.led import ( | |
LED_PRETRAINED_MODEL_ARCHIVE_LIST, | |
LEDForConditionalGeneration, | |
LEDForQuestionAnswering, | |
LEDForSequenceClassification, | |
LEDModel, | |
LEDPreTrainedModel, | |
) | |
from .models.longformer import ( | |
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
LongformerForMaskedLM, | |
LongformerForMultipleChoice, | |
LongformerForQuestionAnswering, | |
LongformerForSequenceClassification, | |
LongformerForTokenClassification, | |
LongformerModel, | |
LongformerPreTrainedModel, | |
LongformerSelfAttention, | |
) | |
from .models.luke import ( | |
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, | |
LukeForEntityClassification, | |
LukeForEntityPairClassification, | |
LukeForEntitySpanClassification, | |
LukeModel, | |
LukePreTrainedModel, | |
) | |
from .models.lxmert import ( | |
LxmertEncoder, | |
LxmertForPreTraining, | |
LxmertForQuestionAnswering, | |
LxmertModel, | |
LxmertPreTrainedModel, | |
LxmertVisualFeatureEncoder, | |
LxmertXLayer, | |
) | |
from .models.m2m_100 import ( | |
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, | |
M2M100ForConditionalGeneration, | |
M2M100Model, | |
M2M100PreTrainedModel, | |
) | |
from .models.marian import MarianForCausalLM, MarianModel, MarianMTModel | |
from .models.mbart import ( | |
MBartForCausalLM, | |
MBartForConditionalGeneration, | |
MBartForQuestionAnswering, | |
MBartForSequenceClassification, | |
MBartModel, | |
MBartPreTrainedModel, | |
) | |
from .models.megatron_bert import ( | |
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
MegatronBertForCausalLM, | |
MegatronBertForMaskedLM, | |
MegatronBertForMultipleChoice, | |
MegatronBertForNextSentencePrediction, | |
MegatronBertForPreTraining, | |
MegatronBertForQuestionAnswering, | |
MegatronBertForSequenceClassification, | |
MegatronBertForTokenClassification, | |
MegatronBertModel, | |
MegatronBertPreTrainedModel, | |
) | |
from .models.mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings | |
from .models.mobilebert import ( | |
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
MobileBertForMaskedLM, | |
MobileBertForMultipleChoice, | |
MobileBertForNextSentencePrediction, | |
MobileBertForPreTraining, | |
MobileBertForQuestionAnswering, | |
MobileBertForSequenceClassification, | |
MobileBertForTokenClassification, | |
MobileBertLayer, | |
MobileBertModel, | |
MobileBertPreTrainedModel, | |
load_tf_weights_in_mobilebert, | |
) | |
from .models.mpnet import ( | |
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST, | |
MPNetForMaskedLM, | |
MPNetForMultipleChoice, | |
MPNetForQuestionAnswering, | |
MPNetForSequenceClassification, | |
MPNetForTokenClassification, | |
MPNetLayer, | |
MPNetModel, | |
MPNetPreTrainedModel, | |
) | |
from .models.mt5 import MT5EncoderModel, MT5ForConditionalGeneration, MT5Model | |
from .models.openai import ( | |
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
OpenAIGPTDoubleHeadsModel, | |
OpenAIGPTForSequenceClassification, | |
OpenAIGPTLMHeadModel, | |
OpenAIGPTModel, | |
OpenAIGPTPreTrainedModel, | |
load_tf_weights_in_openai_gpt, | |
) | |
from .models.pegasus import ( | |
PegasusForCausalLM, | |
PegasusForConditionalGeneration, | |
PegasusModel, | |
PegasusPreTrainedModel, | |
) | |
from .models.prophetnet import ( | |
PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST, | |
ProphetNetDecoder, | |
ProphetNetEncoder, | |
ProphetNetForCausalLM, | |
ProphetNetForConditionalGeneration, | |
ProphetNetModel, | |
ProphetNetPreTrainedModel, | |
) | |
from .models.rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration | |
from .models.reformer import ( | |
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
ReformerAttention, | |
ReformerForMaskedLM, | |
ReformerForQuestionAnswering, | |
ReformerForSequenceClassification, | |
ReformerLayer, | |
ReformerModel, | |
ReformerModelWithLMHead, | |
ReformerPreTrainedModel, | |
) | |
from .models.retribert import RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RetriBertModel, RetriBertPreTrainedModel | |
from .models.roberta import ( | |
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, | |
RobertaForCausalLM, | |
RobertaForMaskedLM, | |
RobertaForMultipleChoice, | |
RobertaForQuestionAnswering, | |
RobertaForSequenceClassification, | |
RobertaForTokenClassification, | |
RobertaModel, | |
RobertaPreTrainedModel, | |
) | |
from .models.roformer import ( | |
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
RoFormerForCausalLM, | |
RoFormerForMaskedLM, | |
RoFormerForMultipleChoice, | |
RoFormerForQuestionAnswering, | |
RoFormerForSequenceClassification, | |
RoFormerForTokenClassification, | |
RoFormerLayer, | |
RoFormerModel, | |
RoFormerPreTrainedModel, | |
load_tf_weights_in_roformer, | |
) | |
from .models.speech_to_text import ( | |
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
Speech2TextForConditionalGeneration, | |
Speech2TextModel, | |
Speech2TextPreTrainedModel, | |
) | |
from .models.squeezebert import ( | |
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
SqueezeBertForMaskedLM, | |
SqueezeBertForMultipleChoice, | |
SqueezeBertForQuestionAnswering, | |
SqueezeBertForSequenceClassification, | |
SqueezeBertForTokenClassification, | |
SqueezeBertModel, | |
SqueezeBertModule, | |
SqueezeBertPreTrainedModel, | |
) | |
from .models.t5 import ( | |
T5_PRETRAINED_MODEL_ARCHIVE_LIST, | |
T5EncoderModel, | |
T5ForConditionalGeneration, | |
T5Model, | |
T5PreTrainedModel, | |
load_tf_weights_in_t5, | |
) | |
from .models.tapas import ( | |
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TapasForMaskedLM, | |
TapasForQuestionAnswering, | |
TapasForSequenceClassification, | |
TapasModel, | |
TapasPreTrainedModel, | |
) | |
from .models.transfo_xl import ( | |
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, | |
AdaptiveEmbedding, | |
TransfoXLForSequenceClassification, | |
TransfoXLLMHeadModel, | |
TransfoXLModel, | |
TransfoXLPreTrainedModel, | |
load_tf_weights_in_transfo_xl, | |
) | |
from .models.visual_bert import ( # load_tf_weights_in_visual_bert, | |
VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
VisualBertForMultipleChoice, | |
VisualBertForPreTraining, | |
VisualBertForQuestionAnswering, | |
VisualBertForRegionToPhraseAlignment, | |
VisualBertForVisualReasoning, | |
VisualBertLayer, | |
VisualBertModel, | |
VisualBertPreTrainedModel, | |
) | |
from .models.vit import ( | |
VIT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
ViTForImageClassification, | |
ViTModel, | |
ViTPreTrainedModel, | |
) | |
from .models.wav2vec2 import ( | |
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, | |
Wav2Vec2ForCTC, | |
Wav2Vec2ForMaskedLM, | |
Wav2Vec2ForPreTraining, | |
Wav2Vec2Model, | |
Wav2Vec2PreTrainedModel, | |
) | |
from .models.xlm import ( | |
XLM_PRETRAINED_MODEL_ARCHIVE_LIST, | |
XLMForMultipleChoice, | |
XLMForQuestionAnswering, | |
XLMForQuestionAnsweringSimple, | |
XLMForSequenceClassification, | |
XLMForTokenClassification, | |
XLMModel, | |
XLMPreTrainedModel, | |
XLMWithLMHeadModel, | |
) | |
from .models.xlm_prophetnet import ( | |
XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST, | |
XLMProphetNetDecoder, | |
XLMProphetNetEncoder, | |
XLMProphetNetForCausalLM, | |
XLMProphetNetForConditionalGeneration, | |
XLMProphetNetModel, | |
) | |
from .models.xlm_roberta import ( | |
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, | |
XLMRobertaForCausalLM, | |
XLMRobertaForMaskedLM, | |
XLMRobertaForMultipleChoice, | |
XLMRobertaForQuestionAnswering, | |
XLMRobertaForSequenceClassification, | |
XLMRobertaForTokenClassification, | |
XLMRobertaModel, | |
) | |
from .models.xlnet import ( | |
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, | |
XLNetForMultipleChoice, | |
XLNetForQuestionAnswering, | |
XLNetForQuestionAnsweringSimple, | |
XLNetForSequenceClassification, | |
XLNetForTokenClassification, | |
XLNetLMHeadModel, | |
XLNetModel, | |
XLNetPreTrainedModel, | |
load_tf_weights_in_xlnet, | |
) | |
# Optimization | |
from .optimization import ( | |
Adafactor, | |
AdamW, | |
get_constant_schedule, | |
get_constant_schedule_with_warmup, | |
get_cosine_schedule_with_warmup, | |
get_cosine_with_hard_restarts_schedule_with_warmup, | |
get_linear_schedule_with_warmup, | |
get_polynomial_decay_schedule_with_warmup, | |
get_scheduler, | |
) | |
# Trainer | |
from .trainer import Trainer | |
from .trainer_pt_utils import torch_distributed_zero_first | |
from .trainer_seq2seq import Seq2SeqTrainer | |
else: | |
from .utils.dummy_pt_objects import * | |
# TensorFlow | |
if is_tf_available(): | |
from .benchmark.benchmark_args_tf import TensorFlowBenchmarkArguments | |
# Benchmarks | |
from .benchmark.benchmark_tf import TensorFlowBenchmark | |
from .generation_tf_utils import tf_top_k_top_p_filtering | |
from .modeling_tf_layoutlm import ( | |
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFLayoutLMForMaskedLM, | |
TFLayoutLMForSequenceClassification, | |
TFLayoutLMForTokenClassification, | |
TFLayoutLMMainLayer, | |
TFLayoutLMModel, | |
TFLayoutLMPreTrainedModel, | |
) | |
from .modeling_tf_utils import TFPreTrainedModel, TFSequenceSummary, TFSharedEmbeddings, shape_list | |
from .models.albert import ( | |
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFAlbertForMaskedLM, | |
TFAlbertForMultipleChoice, | |
TFAlbertForPreTraining, | |
TFAlbertForQuestionAnswering, | |
TFAlbertForSequenceClassification, | |
TFAlbertForTokenClassification, | |
TFAlbertMainLayer, | |
TFAlbertModel, | |
TFAlbertPreTrainedModel, | |
) | |
from .models.auto import ( | |
TF_MODEL_FOR_CAUSAL_LM_MAPPING, | |
TF_MODEL_FOR_MASKED_LM_MAPPING, | |
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, | |
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, | |
TF_MODEL_FOR_PRETRAINING_MAPPING, | |
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, | |
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, | |
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, | |
TF_MODEL_MAPPING, | |
TF_MODEL_WITH_LM_HEAD_MAPPING, | |
TFAutoModel, | |
TFAutoModelForCausalLM, | |
TFAutoModelForMaskedLM, | |
TFAutoModelForMultipleChoice, | |
TFAutoModelForPreTraining, | |
TFAutoModelForQuestionAnswering, | |
TFAutoModelForSeq2SeqLM, | |
TFAutoModelForSequenceClassification, | |
TFAutoModelForTokenClassification, | |
TFAutoModelWithLMHead, | |
) | |
from .models.bart import TFBartForConditionalGeneration, TFBartModel, TFBartPretrainedModel | |
from .models.bert import ( | |
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFBertEmbeddings, | |
TFBertForMaskedLM, | |
TFBertForMultipleChoice, | |
TFBertForNextSentencePrediction, | |
TFBertForPreTraining, | |
TFBertForQuestionAnswering, | |
TFBertForSequenceClassification, | |
TFBertForTokenClassification, | |
TFBertLMHeadModel, | |
TFBertMainLayer, | |
TFBertModel, | |
TFBertPreTrainedModel, | |
) | |
from .models.blenderbot import ( | |
TFBlenderbotForConditionalGeneration, | |
TFBlenderbotModel, | |
TFBlenderbotPreTrainedModel, | |
) | |
from .models.blenderbot_small import ( | |
TFBlenderbotSmallForConditionalGeneration, | |
TFBlenderbotSmallModel, | |
TFBlenderbotSmallPreTrainedModel, | |
) | |
from .models.camembert import ( | |
TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFCamembertForMaskedLM, | |
TFCamembertForMultipleChoice, | |
TFCamembertForQuestionAnswering, | |
TFCamembertForSequenceClassification, | |
TFCamembertForTokenClassification, | |
TFCamembertModel, | |
) | |
from .models.convbert import ( | |
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFConvBertForMaskedLM, | |
TFConvBertForMultipleChoice, | |
TFConvBertForQuestionAnswering, | |
TFConvBertForSequenceClassification, | |
TFConvBertForTokenClassification, | |
TFConvBertLayer, | |
TFConvBertModel, | |
TFConvBertPreTrainedModel, | |
) | |
from .models.ctrl import ( | |
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFCTRLForSequenceClassification, | |
TFCTRLLMHeadModel, | |
TFCTRLModel, | |
TFCTRLPreTrainedModel, | |
) | |
from .models.distilbert import ( | |
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFDistilBertForMaskedLM, | |
TFDistilBertForMultipleChoice, | |
TFDistilBertForQuestionAnswering, | |
TFDistilBertForSequenceClassification, | |
TFDistilBertForTokenClassification, | |
TFDistilBertMainLayer, | |
TFDistilBertModel, | |
TFDistilBertPreTrainedModel, | |
) | |
from .models.dpr import ( | |
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFDPRContextEncoder, | |
TFDPRPretrainedContextEncoder, | |
TFDPRPretrainedQuestionEncoder, | |
TFDPRPretrainedReader, | |
TFDPRQuestionEncoder, | |
TFDPRReader, | |
) | |
from .models.electra import ( | |
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFElectraForMaskedLM, | |
TFElectraForMultipleChoice, | |
TFElectraForPreTraining, | |
TFElectraForQuestionAnswering, | |
TFElectraForSequenceClassification, | |
TFElectraForTokenClassification, | |
TFElectraModel, | |
TFElectraPreTrainedModel, | |
) | |
from .models.flaubert import ( | |
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFFlaubertForMultipleChoice, | |
TFFlaubertForQuestionAnsweringSimple, | |
TFFlaubertForSequenceClassification, | |
TFFlaubertForTokenClassification, | |
TFFlaubertModel, | |
TFFlaubertPreTrainedModel, | |
TFFlaubertWithLMHeadModel, | |
) | |
from .models.funnel import ( | |
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFFunnelBaseModel, | |
TFFunnelForMaskedLM, | |
TFFunnelForMultipleChoice, | |
TFFunnelForPreTraining, | |
TFFunnelForQuestionAnswering, | |
TFFunnelForSequenceClassification, | |
TFFunnelForTokenClassification, | |
TFFunnelModel, | |
TFFunnelPreTrainedModel, | |
) | |
from .models.gpt2 import ( | |
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFGPT2DoubleHeadsModel, | |
TFGPT2ForSequenceClassification, | |
TFGPT2LMHeadModel, | |
TFGPT2MainLayer, | |
TFGPT2Model, | |
TFGPT2PreTrainedModel, | |
) | |
from .models.hubert import ( | |
TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFHubertForCTC, | |
TFHubertModel, | |
TFHubertPreTrainedModel, | |
) | |
from .models.led import TFLEDForConditionalGeneration, TFLEDModel, TFLEDPreTrainedModel | |
from .models.longformer import ( | |
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFLongformerForMaskedLM, | |
TFLongformerForMultipleChoice, | |
TFLongformerForQuestionAnswering, | |
TFLongformerForSequenceClassification, | |
TFLongformerForTokenClassification, | |
TFLongformerModel, | |
TFLongformerPreTrainedModel, | |
TFLongformerSelfAttention, | |
) | |
from .models.lxmert import ( | |
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFLxmertForPreTraining, | |
TFLxmertMainLayer, | |
TFLxmertModel, | |
TFLxmertPreTrainedModel, | |
TFLxmertVisualFeatureEncoder, | |
) | |
from .models.marian import TFMarianModel, TFMarianMTModel, TFMarianPreTrainedModel | |
from .models.mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel | |
from .models.mobilebert import ( | |
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFMobileBertForMaskedLM, | |
TFMobileBertForMultipleChoice, | |
TFMobileBertForNextSentencePrediction, | |
TFMobileBertForPreTraining, | |
TFMobileBertForQuestionAnswering, | |
TFMobileBertForSequenceClassification, | |
TFMobileBertForTokenClassification, | |
TFMobileBertMainLayer, | |
TFMobileBertModel, | |
TFMobileBertPreTrainedModel, | |
) | |
from .models.mpnet import ( | |
TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFMPNetForMaskedLM, | |
TFMPNetForMultipleChoice, | |
TFMPNetForQuestionAnswering, | |
TFMPNetForSequenceClassification, | |
TFMPNetForTokenClassification, | |
TFMPNetMainLayer, | |
TFMPNetModel, | |
TFMPNetPreTrainedModel, | |
) | |
from .models.mt5 import TFMT5EncoderModel, TFMT5ForConditionalGeneration, TFMT5Model | |
from .models.openai import ( | |
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFOpenAIGPTDoubleHeadsModel, | |
TFOpenAIGPTForSequenceClassification, | |
TFOpenAIGPTLMHeadModel, | |
TFOpenAIGPTMainLayer, | |
TFOpenAIGPTModel, | |
TFOpenAIGPTPreTrainedModel, | |
) | |
from .models.pegasus import TFPegasusForConditionalGeneration, TFPegasusModel, TFPegasusPreTrainedModel | |
from .models.rag import TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration | |
from .models.roberta import ( | |
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFRobertaForMaskedLM, | |
TFRobertaForMultipleChoice, | |
TFRobertaForQuestionAnswering, | |
TFRobertaForSequenceClassification, | |
TFRobertaForTokenClassification, | |
TFRobertaMainLayer, | |
TFRobertaModel, | |
TFRobertaPreTrainedModel, | |
) | |
from .models.roformer import ( | |
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFRoFormerForCausalLM, | |
TFRoFormerForMaskedLM, | |
TFRoFormerForMultipleChoice, | |
TFRoFormerForQuestionAnswering, | |
TFRoFormerForSequenceClassification, | |
TFRoFormerForTokenClassification, | |
TFRoFormerLayer, | |
TFRoFormerModel, | |
TFRoFormerPreTrainedModel, | |
) | |
from .models.t5 import ( | |
TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFT5EncoderModel, | |
TFT5ForConditionalGeneration, | |
TFT5Model, | |
TFT5PreTrainedModel, | |
) | |
from .models.transfo_xl import ( | |
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFAdaptiveEmbedding, | |
TFTransfoXLForSequenceClassification, | |
TFTransfoXLLMHeadModel, | |
TFTransfoXLMainLayer, | |
TFTransfoXLModel, | |
TFTransfoXLPreTrainedModel, | |
) | |
from .models.wav2vec2 import ( | |
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFWav2Vec2ForCTC, | |
TFWav2Vec2Model, | |
TFWav2Vec2PreTrainedModel, | |
) | |
from .models.xlm import ( | |
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFXLMForMultipleChoice, | |
TFXLMForQuestionAnsweringSimple, | |
TFXLMForSequenceClassification, | |
TFXLMForTokenClassification, | |
TFXLMMainLayer, | |
TFXLMModel, | |
TFXLMPreTrainedModel, | |
TFXLMWithLMHeadModel, | |
) | |
from .models.xlm_roberta import ( | |
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFXLMRobertaForMaskedLM, | |
TFXLMRobertaForMultipleChoice, | |
TFXLMRobertaForQuestionAnswering, | |
TFXLMRobertaForSequenceClassification, | |
TFXLMRobertaForTokenClassification, | |
TFXLMRobertaModel, | |
) | |
from .models.xlnet import ( | |
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFXLNetForMultipleChoice, | |
TFXLNetForQuestionAnsweringSimple, | |
TFXLNetForSequenceClassification, | |
TFXLNetForTokenClassification, | |
TFXLNetLMHeadModel, | |
TFXLNetMainLayer, | |
TFXLNetModel, | |
TFXLNetPreTrainedModel, | |
) | |
# Optimization | |
from .optimization_tf import AdamWeightDecay, GradientAccumulator, WarmUp, create_optimizer | |
# Trainer | |
from .trainer_tf import TFTrainer | |
else: | |
# Import the same objects as dummies to get them in the namespace. | |
# They will raise an import error if the user tries to instantiate / use them. | |
from .utils.dummy_tf_objects import * | |
if is_flax_available(): | |
from .generation_flax_logits_process import ( | |
FlaxForcedBOSTokenLogitsProcessor, | |
FlaxForcedEOSTokenLogitsProcessor, | |
FlaxLogitsProcessor, | |
FlaxLogitsProcessorList, | |
FlaxLogitsWarper, | |
FlaxMinLengthLogitsProcessor, | |
FlaxTemperatureLogitsWarper, | |
FlaxTopKLogitsWarper, | |
FlaxTopPLogitsWarper, | |
) | |
from .modeling_flax_utils import FlaxPreTrainedModel | |
from .models.auto import ( | |
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, | |
FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, | |
FLAX_MODEL_FOR_MASKED_LM_MAPPING, | |
FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, | |
FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, | |
FLAX_MODEL_FOR_PRETRAINING_MAPPING, | |
FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING, | |
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, | |
FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, | |
FLAX_MODEL_MAPPING, | |
FlaxAutoModel, | |
FlaxAutoModelForCausalLM, | |
FlaxAutoModelForImageClassification, | |
FlaxAutoModelForMaskedLM, | |
FlaxAutoModelForMultipleChoice, | |
FlaxAutoModelForNextSentencePrediction, | |
FlaxAutoModelForPreTraining, | |
FlaxAutoModelForQuestionAnswering, | |
FlaxAutoModelForSeq2SeqLM, | |
FlaxAutoModelForSequenceClassification, | |
FlaxAutoModelForTokenClassification, | |
) | |
from .models.bart import ( | |
FlaxBartForConditionalGeneration, | |
FlaxBartForQuestionAnswering, | |
FlaxBartForSequenceClassification, | |
FlaxBartModel, | |
FlaxBartPreTrainedModel, | |
) | |
from .models.bert import ( | |
FlaxBertForMaskedLM, | |
FlaxBertForMultipleChoice, | |
FlaxBertForNextSentencePrediction, | |
FlaxBertForPreTraining, | |
FlaxBertForQuestionAnswering, | |
FlaxBertForSequenceClassification, | |
FlaxBertForTokenClassification, | |
FlaxBertModel, | |
FlaxBertPreTrainedModel, | |
) | |
from .models.big_bird import ( | |
FlaxBigBirdForMaskedLM, | |
FlaxBigBirdForMultipleChoice, | |
FlaxBigBirdForPreTraining, | |
FlaxBigBirdForQuestionAnswering, | |
FlaxBigBirdForSequenceClassification, | |
FlaxBigBirdForTokenClassification, | |
FlaxBigBirdModel, | |
FlaxBigBirdPreTrainedModel, | |
) | |
from .models.clip import ( | |
FlaxCLIPModel, | |
FlaxCLIPPreTrainedModel, | |
FlaxCLIPTextModel, | |
FlaxCLIPTextPreTrainedModel, | |
FlaxCLIPVisionModel, | |
FlaxCLIPVisionPreTrainedModel, | |
) | |
from .models.electra import ( | |
FlaxElectraForMaskedLM, | |
FlaxElectraForMultipleChoice, | |
FlaxElectraForPreTraining, | |
FlaxElectraForQuestionAnswering, | |
FlaxElectraForSequenceClassification, | |
FlaxElectraForTokenClassification, | |
FlaxElectraModel, | |
FlaxElectraPreTrainedModel, | |
) | |
from .models.gpt2 import FlaxGPT2LMHeadModel, FlaxGPT2Model, FlaxGPT2PreTrainedModel | |
from .models.gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel | |
from .models.marian import FlaxMarianModel, FlaxMarianMTModel, FlaxMarianPreTrainedModel | |
from .models.mbart import ( | |
FlaxMBartForConditionalGeneration, | |
FlaxMBartForQuestionAnswering, | |
FlaxMBartForSequenceClassification, | |
FlaxMBartModel, | |
FlaxMBartPreTrainedModel, | |
) | |
from .models.roberta import ( | |
FlaxRobertaForMaskedLM, | |
FlaxRobertaForMultipleChoice, | |
FlaxRobertaForQuestionAnswering, | |
FlaxRobertaForSequenceClassification, | |
FlaxRobertaForTokenClassification, | |
FlaxRobertaModel, | |
FlaxRobertaPreTrainedModel, | |
) | |
from .models.t5 import FlaxT5ForConditionalGeneration, FlaxT5Model, FlaxT5PreTrainedModel | |
from .models.vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel | |
from .models.wav2vec2 import ( | |
FlaxWav2Vec2ForCTC, | |
FlaxWav2Vec2ForPreTraining, | |
FlaxWav2Vec2Model, | |
FlaxWav2Vec2PreTrainedModel, | |
) | |
else: | |
# Import the same objects as dummies to get them in the namespace. | |
# They will raise an import error if the user tries to instantiate / use them. | |
from .utils.dummy_flax_objects import * | |
else: | |
import sys | |
sys.modules[__name__] = _LazyModule( | |
__name__, globals()["__file__"], _import_structure, extra_objects={"__version__": __version__} | |
) | |
if not is_tf_available() and not is_torch_available() and not is_flax_available(): | |
logger.warning( | |
"None of PyTorch, TensorFlow >= 2.0, or Flax have been found. " | |
"Models won't be available and only tokenizers, configuration " | |
"and file/data utilities can be used." | |
) | |