File size: 56,055 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
transformers/__init__.py,sha256=vU0NfQd5SjZwkhl5ELrWBYcn5kVz59ShQOcm77qVOac,118787
transformers/activations.py,sha256=vdFvWTv26miTCn-ZK2Vx5h_st2TlM-8F2gHDCZskI34,3537
transformers/activations_tf.py,sha256=icsuyf137XXLTMUq0cTaJ50sPg0urhW5GcJYH37F4fM,2766
transformers/configuration_utils.py,sha256=CJV3_EbIMwKCrNNisbC3mpuHF_QG0TItf2Jl4h3BkxE,40373
transformers/convert_graph_to_onnx.py,sha256=lrCE1ar73gR8nEw4ehQUI3ZgrlvjoijmajPJ014Ef7Q,18640
transformers/convert_pytorch_checkpoint_to_tf2.py,sha256=bAyd-qCY8azDJU6DOen4V9sl7QYlirWheDDKoqm5EhI,16607
transformers/convert_slow_tokenizer.py,sha256=q_ApjpV94Hv2pkwg1RIRopZBlCgzyQussWu2dbUCbWs,29938
transformers/convert_slow_tokenizers_checkpoints_to_fast.py,sha256=DxQB-Ji8I0lZ4EUXBl0ucnoJxwE9rSp3IbfuyMbBxiQ,4955
transformers/convert_tf_hub_seq_to_seq_bert_to_pytorch.py,sha256=LHDZoAwfslnHT74gNbiW2GmYim89tPtKm4HQsxxyeck,2899
transformers/debug_utils.py,sha256=_CfKIueP-5q57XX7hg_kTcgPhttPWqDz93J-7mTZdzU,12950
transformers/deepspeed.py,sha256=x7DKIC0zS6kgM5rf0AF7czzAeOWR8C3Ocpsjq7IzbH8,17035
transformers/dependency_versions_check.py,sha256=z10phKu2S4bq0CeJrVa9PQbPdfpxnUTi-icmNpO0vFk,1772
transformers/dependency_versions_table.py,sha256=nHiPNJSveGek2KxiKaBEJkOVqP2-7IP6E0NMdCqex9w,2501
transformers/feature_extraction_sequence_utils.py,sha256=x-S2Emr2PNSDcc5FPKcuaFEOWx98CW3DFKUzaXhmkVM,15734
transformers/feature_extraction_utils.py,sha256=RjTc_QLUq0w-ojWrABguaam57hjGRuGA_ZSA7KgrBCQ,21973
transformers/file_utils.py,sha256=3aWh5UIRUKGQneeWy9U3y9VHDmjaLrzdF-1kxzh-suA,80956
transformers/generation_beam_search.py,sha256=XNk5Ffu5oL6CTa8ErpgfCWL7-oyhMX_C9DAUXnIX_Zw,17536
transformers/generation_flax_logits_process.py,sha256=Ou06C4Z4ZrVG5YNnmhAYKyxf3r-_9DCo_Dj5QRawAFQ,11805
transformers/generation_flax_utils.py,sha256=rrgQahkB3N9SBecjMdKmVpka05SVTZk6_W8AOmzeCYs,37887
transformers/generation_logits_process.py,sha256=S6U2CkBngnONw7uPtoTsJVBcHJmFwbnfFMsLBrgAYdY,26683
transformers/generation_stopping_criteria.py,sha256=CEYApRm9cbyufwAEoQPC4dCnVQwMJjl6ZFimBfuHgkU,5383
transformers/generation_tf_utils.py,sha256=XxEX2njlMeIIEQekyvGsTe-dqSrH-u4ZwdvOEoDBKV8,91769
transformers/generation_utils.py,sha256=qnlpMQv-LemDRgaUl9yToKtWLUa0dDQbo7bBXhOgO3U,143441
transformers/hf_api.py,sha256=hRt_F1SKUZIdXDg7Wc7PjyDJCi2iF2cRO9ixRatWxsg,7325
transformers/hf_argparser.py,sha256=wVVCpi6o9-Ygm159k3IWZQrl84Q7_lSy6MyOL3dXfU8,10711
transformers/image_utils.py,sha256=m_JcwpRK3o1pgrOCIOt02FTKhAjYI7sPA5hFtAeICp4,8871
transformers/integrations.py,sha256=8mSw7uUt7El0qFmFgvi0wSg_SzgxA1aH9nIv1mjBpzg,33602
transformers/modelcard.py,sha256=qq3Jh-rdPwgUU4JJo7F3Xcy2tpRE2yKIgEVv_y8D70k,29548
transformers/modeling_flax_outputs.py,sha256=C4zrBHH2jrACZE1PPPhlmitmO32Mw_DSkZobO9gr1wY,38385
transformers/modeling_flax_pytorch_utils.py,sha256=w99NEOcY4_yDwHj7IA0KIDoGOg7qIgKX7XCtufoIMd0,10482
transformers/modeling_flax_utils.py,sha256=TG-txCqARtkfG5ySJxtef95AzpiYH9mrysV4sJU7kUs,25432
transformers/modeling_outputs.py,sha256=6LzFctao2A01GNdEdJiq-9NrtnlCxldHFSThqjuMBnA,52392
transformers/modeling_tf_outputs.py,sha256=V_Zr7nvAqVs57_RSm6MaKus_o76QrSr8sTqYrgYFTaU,42017
transformers/modeling_tf_pytorch_utils.py,sha256=V8voosVTkPenT_5cjvvwdeC8dDeSMhbVGiA0nrWkZqk,17997
transformers/modeling_tf_utils.py,sha256=VpqGLJII3OFuu8DOMPthecSKU8r1K3xpsYs3qATApjw,77670
transformers/modeling_utils.py,sha256=hVKFvm8hUpirqIHzhQ3Py8FMN0LO1dLX9vXVGduHNHk,105294
transformers/optimization.py,sha256=0f2SCH0e5LoXONUtaj2QR0hdeWsbsBxDc6A2ILkSiRs,27375
transformers/optimization_tf.py,sha256=MgK90VS75nNh52PZ-ZA5IWPrgck6EF4zpdodQznZje4,15890
transformers/testing_utils.py,sha256=LsqU_0LCQ154iihKsiJo1dq2skfliDr_Ky8sp4Avk9Q,42795
transformers/tokenization_utils.py,sha256=2BiexNvdjmAZ0hWJKgPDOgxgT_NJLEjA_yb_KWZKVAk,32397
transformers/tokenization_utils_base.py,sha256=vHe0uSe9cSzG-Bfxje03kyPqXfV2Cs392Gkr79xyauc,165870
transformers/tokenization_utils_fast.py,sha256=KirTOghLX79mCCot9gvdGFw7b-COHO61mb1CR3xtWqY,32188
transformers/trainer.py,sha256=NKu22yK7RWvNiaLOuPdlaEE4Wa4OxmgiooA2VxlGmKE,126345
transformers/trainer_callback.py,sha256=irUebB5TtddePVIQuT6CuJKobhS-x8CgOwEVqU89amk,23488
transformers/trainer_pt_utils.py,sha256=65y5fH1FeqS0q1BCdOg6E3gHBjJoAS8hjaRUH49bAY4,44264
transformers/trainer_seq2seq.py,sha256=-2ITs8ibbKrGJCDBAiCF4BX1aqWYafqsjsT7GCS9p1k,9744
transformers/trainer_tf.py,sha256=ABdmYj9pYdrYwfC5IOrP5L7rKTPM1kvMaqg2TZcUHoI,34959
transformers/trainer_utils.py,sha256=-tLuHESLRZ3H5Npwv3AdcfWZM_vGlG_NPf6ngNdiPrw,15414
transformers/training_args.py,sha256=DN3CkrvEiIX1r5aKeVkgGqSxH79mi1Ja93XKE9jrlBM,57088
transformers/training_args_seq2seq.py,sha256=mHau-QBp-b0NMBRraU2MOS7ibQSF2YoL0iuuow4eM2o,1754
transformers/training_args_tf.py,sha256=4cBb-HvWkqclWDxHGUnYOTMwPNK6RjJioxz2JmOx2nE,14909
transformers/benchmark/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
transformers/benchmark/benchmark.py,sha256=j4iQWOlkmPKSgGF7ItFhI78VEkXKCyBJ1nKcDUng2A8,10613
transformers/benchmark/benchmark_args.py,sha256=TSaQ9z4kIOX27VzbFco7OGzdt0y2Rze7qgMj8oDrWFM,3777
transformers/benchmark/benchmark_args_tf.py,sha256=r84A8jMUserwHmuQc9hgfhh6zJMRagUhsdwHdFJ8a1I,4573
transformers/benchmark/benchmark_args_utils.py,sha256=bKmk1DYEXSVVCpqbcFuB6XeR_rcD_2joXSqkpVTHSc4,5895
transformers/benchmark/benchmark_tf.py,sha256=QHrBfRItUfCbjK8vWLbeovE1bzSHVFb1nau_FiBR_dk,12924
transformers/benchmark/benchmark_utils.py,sha256=3241wr2_bK1dHzw_-151XepeJl274YEwpOyE3Ewz_RY,37265
transformers/commands/__init__.py,sha256=aFO3I7C6G9OLA9JZSc_yMaZl0glOQtjNPjqMFfu9wfQ,923
transformers/commands/add_new_model.py,sha256=QufphyzDMFkiZODBe7_7XWSSUF5AmnSEjKYCVxGXErU,9393
transformers/commands/convert.py,sha256=r94i7Y3UgdhvC7SvJ2hFBgEro8jlKku3r7QJWlWOHqw,7555
transformers/commands/download.py,sha256=LgjPfIvyS4T_CUWyaEfTdzm70ukcmE088XcARc98SKc,1860
transformers/commands/env.py,sha256=F3CmAIc2zMGV7JYr1NW0ZMXHxkzMXj_YVRXOx8uq43I,3223
transformers/commands/lfs.py,sha256=MZtTExjpnzTH1WKBqnVzCharnagHYT990LLw7bfDf9g,7951
transformers/commands/run.py,sha256=YmVnwcl3ECHAGpJG8YnG-t1-SH1triqwkvydAllCvTI,4316
transformers/commands/serving.py,sha256=UqPfTf7ptECNO6Sbkz-0o6_jNgdXC-IWv7I5BqkbneU,8088
transformers/commands/train.py,sha256=ci3PIPifxzAPVuNrEo6V2CtFU8Can1lNLc0jsP7UkSA,6371
transformers/commands/transformers_cli.py,sha256=3SbLbWHB7YD5yAFlkiVPv7y2i2SD59ouQn132C_47uU,1837
transformers/commands/user.py,sha256=tSTrVFHnXH_OkjExNe9CK-Qs1LDtS-UdIM3rXb0XXSQ,15582
transformers/data/__init__.py,sha256=R-RTJ0SCSk2tAZmM7uiB_EeDrgMVfg0GxVkKIU58ikk,1271
transformers/data/data_collator.py,sha256=fwvMWLGVLOtvdSY-ttZxDqMZtSg-Taxyfwdf2e_gxJ0,36353
transformers/data/test_generation_utils.py,sha256=mImkKgzBwIyM4YyYU43EI_33giCE7RFOdx0AXyrrxIg,3438
transformers/data/datasets/__init__.py,sha256=w6nfIPWoQNrf9dn1fVK9WQGm2eHtZOw2HOKSACbWNlk,1080
transformers/data/datasets/glue.py,sha256=yBT_ZxcLJ8qP89OFYKG57kX6eXc13DVXLDBtahJhy0M,6139
transformers/data/datasets/language_modeling.py,sha256=dSA2_W4SL5PpzU6zREOZgpPkrFmlF6r0SRghRl6U0Tc,22637
transformers/data/datasets/squad.py,sha256=hZC70ZAtBVd7LsZMV11cFfcT7mkMTaqNu5DobraZEy0,9042
transformers/data/metrics/__init__.py,sha256=vn0Ia7TaHRC7uSF-trNGueJbh5QqbbtxwUagTPk4_ro,3783
transformers/data/metrics/squad_metrics.py,sha256=CtGdGGEKIweyyuwQw2NRwvNHIWwoKsHsuW9rTunwIXg,29617
transformers/data/processors/__init__.py,sha256=4AxJWnnlohFY0fgJ3f24tP3lQ4t4Z5ks9WypFH7F9Fk,1185
transformers/data/processors/glue.py,sha256=xmDyK07tmoc5Lwg3pivCTdLD8TKws4JoKCuBcYo1wIY,23289
transformers/data/processors/squad.py,sha256=5nQEqW043AvF8HdrIEAYy_SkpUOcuZY64C-8jds_hPY,33283
transformers/data/processors/utils.py,sha256=4dbyHPQIFX8x0O76xn-DtevfRFZcwo2nuqNBd_mh_nw,13833
transformers/data/processors/xnli.py,sha256=eylu-SFA0gn7ZIv7Rp1Eu8vdqai3RLFxysNiHAr45pc,3290
transformers/models/__init__.py,sha256=2U9ggegZWChHQep_GQ7VjH32nvO13epoj4HowfPD7uM,1656
transformers/models/albert/__init__.py,sha256=8J8D7gJk-iSbof8u9HqWk9BZ7vZ7st2aUW3M5WlFDsw,3549
transformers/models/albert/configuration_albert.py,sha256=xd3H4FpdoYn4jo2VC3EROrbnzzgsoe0F5BWkcUj63bA,8984
transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py,sha256=OLAsUH7e5hPQz68AbPqy_ZJm8QzueEYX15nk1YAbZCE,2155
transformers/models/albert/modeling_albert.py,sha256=ARYj-1vw4Vxr5_nL_fGxhCk2ZH-t0ViEv86gfOiZwBc,56453
transformers/models/albert/modeling_tf_albert.py,sha256=9es_iwVUVYEeQnymF4E3rzeJNP9afxcBV8Rm5C62TiQ,70275
transformers/models/albert/tokenization_albert.py,sha256=3BUdj8cApmJ3jzVGxTt6MaDmKEXJ65hlTPQsKpb2iok,14513
transformers/models/albert/tokenization_albert_fast.py,sha256=So4k2K_m_fSBvHf193o3bngbI_YszSkd4tQPIsnhpEI,10552
transformers/models/auto/__init__.py,sha256=UUszNWq7T1ls17EfOIzs9JYuJ5q34q55goKAFgtE2nw,8313
transformers/models/auto/auto_factory.py,sha256=ARmNHJ4ZD5vn5qxohsJMQq-6QKeQGzA0HN5ZpQ7-jlc,27603
transformers/models/auto/configuration_auto.py,sha256=82bx143ABrTfxZt1YMi9KUmnvc9InD2Ii2mwnmifJg4,22776
transformers/models/auto/feature_extraction_auto.py,sha256=FnJyoBpHdHh_PclNLvkWEFy9oRhtKx6rw1DNKv4JFG8,8260
transformers/models/auto/modeling_auto.py,sha256=y2k6_ZzfCGVtF7WTIDSxjB5GlX0bvY1YdTst2He49t8,33274
transformers/models/auto/modeling_flax_auto.py,sha256=HFSU-_kxLAmIshTP5up2_28vJYtz0HmjQWNyntHDFuk,9806
transformers/models/auto/modeling_tf_auto.py,sha256=-rn0-ulsFfMPcawLmfvexAUAI2oVXDrQBiJ1SD5qRPM,21745
transformers/models/auto/tokenization_auto.py,sha256=893OMQv9bzbmFFXHeNK7iUtN2naYytBs4sib-huNEkA,27427
transformers/models/bart/__init__.py,sha256=kziWliIcT1VPlGoReqFgTCD2pGvWjm1pF8ymu85ff7g,3116
transformers/models/bart/configuration_bart.py,sha256=n3P_Y82l7rA_AoCVr-Cahpzk3rrYtvYOQ3qt_ScbBeQ,10106
transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py,sha256=UbkbQ6_JRDqbMtk8kmwQ8LEX87fU_SxlyBDQCgrHNiI,5647
transformers/models/bart/modeling_bart.py,sha256=URn7nSgmP_CO97TsAIGpIZY6nlp8WT1ztcGGV12J5ns,83415
transformers/models/bart/modeling_flax_bart.py,sha256=VaMyYVSZn3fQHL30R2AmHRJ_aHZTKuCZBr1Q7n7xCCg,72353
transformers/models/bart/modeling_tf_bart.py,sha256=VC8LdpMVrh1mTeFM6qP3F6OD0ePhutCfkTykn_GE6rA,70569
transformers/models/bart/tokenization_bart.py,sha256=ewxV_QGr2VyJWyp3Qv4kV9GsnUiQnDvKyyrrHYgM5yg,3052
transformers/models/bart/tokenization_bart_fast.py,sha256=0PVvHIXOWMNfm-g2os7cjqTgFHvaVVDq45tGe-QrDtE,3942
transformers/models/barthez/__init__.py,sha256=-Fop4WQ7FLyBfQGhrDDJIj-DFCAyv83c-REkQXu0rrw,1475
transformers/models/barthez/tokenization_barthez.py,sha256=TtTltDUxNczCa9FnxDhaQYvGCKRpITpHd6UozYzrwZc,12497
transformers/models/barthez/tokenization_barthez_fast.py,sha256=yaxGNyt1hoKE8FnzG2tchLH7t-vVAhXFQfZg5QIEv1A,8748
transformers/models/bert/__init__.py,sha256=d7A-FZGgSOznzjFcvizRU80_75QJDW0fIvPXM4VcYQE,4611
transformers/models/bert/configuration_bert.py,sha256=uPrjdZZIHo3JFY9_qvfBjHbt-TiGbl7IYHqjAymLoVI,10322
transformers/models/bert/convert_bert_original_tf2_checkpoint_to_pytorch.py,sha256=PR3miUETPZEBnT5Q9alOijwT-iOifcR2rJXXhtN7u98,10253
transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py,sha256=NjnB6Ux0mnn_D7WeDBkNiMqEr2LYYztU8eByGVQBEec,2131
transformers/models/bert/convert_bert_pytorch_checkpoint_to_original_tf.py,sha256=rOZ4Af0a3lEGdCR5ikswI67O2BcDnfL5eTtrXMk5jNw,4101
transformers/models/bert/modeling_bert.py,sha256=zdPoyaaa0lLc5tFiLdQs4w33IHnp-gCZQO_xi2LaymY,78800
transformers/models/bert/modeling_flax_bert.py,sha256=_XICp_qYmG2Wz_f0hiuBvwscNaW0eTkN3JpFzDxXiLs,42177
transformers/models/bert/modeling_tf_bert.py,sha256=cjF7Vbutv27RhPApThPJWXVB4SyaYbedY7_p-cz8HjE,82409
transformers/models/bert/tokenization_bert.py,sha256=SIMJJZ5eDquFAQjM-TUk33tCYCkBDgoBYMfOJ1D9kxQ,24552
transformers/models/bert/tokenization_bert_fast.py,sha256=y7tT0ngXQFhiPPWOwPYJWia4qW2VAJZJXBCdSnepGUE,14323
transformers/models/bert_generation/__init__.py,sha256=6y5LOb5FgJeEZLQx8GFVa66qjddp1qnx9f_8Vft0sDA,1908
transformers/models/bert_generation/configuration_bert_generation.py,sha256=QurVdo80hLC3Z4saVEjvTbfrNC4iNi6RDML8_Nss6BM,6324
transformers/models/bert_generation/modeling_bert_generation.py,sha256=WpIHBzssvF-an19oeHIhfa4FwXP00-j-cw44gZVRYf0,27566
transformers/models/bert_generation/tokenization_bert_generation.py,sha256=-nazgr01l2RabK2d9lUKzzqRQmeFx-i7aUeri9jtqDM,6513
transformers/models/bert_japanese/__init__.py,sha256=bxBT0C99Sf-kvvEMjBjN6J5SGsMIMKImFYzgMqPNurA,1214
transformers/models/bert_japanese/tokenization_bert_japanese.py,sha256=nO4woRqHo6xg4ClhpfI54JqDb6Fo983S2WJxmxYZVdI,13227
transformers/models/bertweet/__init__.py,sha256=FOpFC4vt8uqAtPfvKd5wTL2BBlmW4QmMgSayprpNvw4,1120
transformers/models/bertweet/tokenization_bertweet.py,sha256=iyvCaH0gW0PzSdg1WlPlvauj7Z74Vmkc3uFjZdbX8HE,27394
transformers/models/big_bird/__init__.py,sha256=nBBqD92FXQey1n0bharIf2VFM_u3fJTsVbKmrxSV_gQ,3590
transformers/models/big_bird/configuration_big_bird.py,sha256=GcbvK1Axpt2rwR2eDcjoRR2dDQcJB96GlcP7fwjXlOs,8037
transformers/models/big_bird/convert_bigbird_original_tf_checkpoint_to_pytorch.py,sha256=3dCKKeSoJK72D6YWYLL07MNSt4jmHygu0De249VWt5I,2466
transformers/models/big_bird/modeling_big_bird.py,sha256=5IwxsjkyanY8YsTJTcjCYoQ18Qo905QEPNv1uuV4gWE,135005
transformers/models/big_bird/modeling_flax_big_bird.py,sha256=RqxVMq35mC-kMgpM2gvncpFWG40Ab37USDGEg8qVUhY,85524
transformers/models/big_bird/tokenization_big_bird.py,sha256=e7TugIGmPO_cZP2sH0LTgFlPbA-CoWl5nYO42O43JOU,12261
transformers/models/big_bird/tokenization_big_bird_fast.py,sha256=s0n6bRd90Zwx3o29DLw7IGZdA3Ws3DF2oFd1qwTiScM,11146
transformers/models/bigbird_pegasus/__init__.py,sha256=vkNAvxkXV4vXQP5_wk2WqVIO0ENBBuyq0SgrvxXNKkk,2072
transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py,sha256=mCJhSplCvne8ll8SuyhOmW4cxDoNq3wt4UYoWLNUCyk,9748
transformers/models/bigbird_pegasus/convert_bigbird_pegasus_tf_to_pytorch.py,sha256=CsoYYIaepYmhoG7r3tQKlRsXKfKUc0pxzciN0hwxysU,6295
transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py,sha256=7rQJxMwPxpOYtcQ5Ay2i56S7n1SUU-mTskJMiBRLRls,142054
transformers/models/blenderbot/__init__.py,sha256=kmjdtkZ-eCkAdCZafgksddC86P1GVNs3ix5OT6AH9tY,2331
transformers/models/blenderbot/configuration_blenderbot.py,sha256=QzkhuNUkB1Hl4bf19QIu-tutw39fqUZlLDJYaXvhwZU,8590
transformers/models/blenderbot/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.py,sha256=bqHKTaU9P7BUedAtCHYeT_NaFxg4EpkEDgzNWX23Jcs,3678
transformers/models/blenderbot/modeling_blenderbot.py,sha256=cLkly7g8Ia8w5iF99txrXO4o5on19frzEBVeU1tIKvA,74735
transformers/models/blenderbot/modeling_tf_blenderbot.py,sha256=ucbzVV9XZFli4JdEEA3O5IbIguhAQGgR9lbkzk2S6kg,73218
transformers/models/blenderbot/tokenization_blenderbot.py,sha256=bezI1HOBQDD4iQeZQwSI3RhXxZsL0fiRq07hvhdRFoE,4134
transformers/models/blenderbot_small/__init__.py,sha256=0fA-n-rY7xRq3nV5gzJJc1aQ13-ySQ454M2o9NYzY3E,2490
transformers/models/blenderbot_small/configuration_blenderbot_small.py,sha256=bKICjyWf07HkDLAN-Ah3XAk9XY8EB4EgW9AeLV5Ga2Y,8603
transformers/models/blenderbot_small/modeling_blenderbot_small.py,sha256=LiM49wsZbeK8zZX-Ihk6aqOsAnUM3FjGhZR9Hpw7wRo,73753
transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py,sha256=8dmNwSSqG4uzrn_H-ze9CUm8-bPYEhx6AosSxpOwR6w,72131
transformers/models/blenderbot_small/tokenization_blenderbot_small.py,sha256=qubiFN1ZlIXVyJvItd_iBWLKztbn9P_lcXf9aRsQCFs,8679
transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py,sha256=nxmEHs9hgXc6SDNcNAUKtxiqMTmj-XeRPszEQWj-nCg,4063
transformers/models/byt5/__init__.py,sha256=Xtl2luQjzz0YllzgMvN-BKJBZGu20I1gxi6J0nMthSM,1103
transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py,sha256=hTwfWSLeVT9i8l8lRQ9ofEv2ntGTvgfM0UVZsA3LvCk,2107
transformers/models/byt5/tokenization_byt5.py,sha256=o253pYWQAurF4JILp1-LRv5MNdylhOwA4VjpUsECdKE,11475
transformers/models/camembert/__init__.py,sha256=tFcuCF1aPIwwVmOJuEpu3fNDLetaeFJwaC43vZ_yjWw,3303
transformers/models/camembert/configuration_camembert.py,sha256=lxDxh3c6h8jpiCLHOmqupFvxGL7Ej35j4iXBvUgRMss,1499
transformers/models/camembert/modeling_camembert.py,sha256=MC24--K-qW-h2axQwIgVuoY0dXmM__8RZFV-0Ew60_A,5734
transformers/models/camembert/modeling_tf_camembert.py,sha256=6ho5nuIm0L9WyYfXKTbhjd-2gEJyVFwr-X_U3bnwQAg,6327
transformers/models/camembert/tokenization_camembert.py,sha256=P8-3XFuCXN6jriYkaroGg3ssQ8bCX4tTLV72GqDGHsA,12909
transformers/models/camembert/tokenization_camembert_fast.py,sha256=nr3MwkEiXXLDvRY9CVgX_xg8PTZrEcupq9V6deBvxwg,8554
transformers/models/canine/__init__.py,sha256=XUHB8nqcjQFzXG7mJn2qd-e7EHFZgJNdglslflPzJ3s,2146
transformers/models/canine/configuration_canine.py,sha256=AjkfV7-g1vU6qM15bcJaP6t4j5NM-UgMkUZDaj-yzvA,6959
transformers/models/canine/convert_canine_original_tf_checkpoint_to_pytorch.py,sha256=nydwXeyOU3vbMxHgqj14ln-VJFOfH4FZG_stSDUa5Y4,2118
transformers/models/canine/modeling_canine.py,sha256=B9o_ZzAZ9A1eJe71lAfMTxKxoO2GNF6F0__-5hU4uao,70648
transformers/models/canine/tokenization_canine.py,sha256=_Ie4bEc7IK_T6u4Fz-xHN7TPzKQXD6eVr8vg-XXnpPQ,9435
transformers/models/clip/__init__.py,sha256=wTM_SED5cW4Db4qkxhLX4yTUASrRaLfDbkwZ2m76Ygw,2995
transformers/models/clip/configuration_clip.py,sha256=TR3ESQgB7V43kZykmfDOzFH_luAm7cHgBH6WAWFiYpQ,13419
transformers/models/clip/convert_clip_original_pytorch_to_hf.py,sha256=QaPBO8oTgNDalO0YCXNnHSnMb0c28fhGX8bN9KtKQTc,5234
transformers/models/clip/feature_extraction_clip.py,sha256=7IuoTT-PVpu3oc2hwveQVK4MG-u4qLX8zT3z3lRIxM0,9548
transformers/models/clip/modeling_clip.py,sha256=Z5W53P8Gz5QKGH9_35J2Fvojjve3wkhSvFSU3rtoH_s,43692
transformers/models/clip/modeling_flax_clip.py,sha256=Gm9XCedk4EzS7h6X9a1r4QKnonlmA2PwFPtzl7hlzMs,44715
transformers/models/clip/processing_clip.py,sha256=wLI74ICxPbxZtTMYjgEVNh7zt7H_sSLKURhtFu10myA,9021
transformers/models/clip/tokenization_clip.py,sha256=Ex035V_am2Od91DLW4d30L0EDJz6rK3M2Ooj937jDLI,14668
transformers/models/clip/tokenization_clip_fast.py,sha256=SxAsstgsSsl7KVrGCV-gP0p-C1YOxK5e0nka_lbrITg,7022
transformers/models/convbert/__init__.py,sha256=RYoeKe0hTIWveA757hwUPKHFk3FqyFgt6pQBlGM_TC8,3380
transformers/models/convbert/configuration_convbert.py,sha256=RZKc_3ITMqU77hq5IEpRhjy1khdp8sQWrtxOMF_94M8,6767
transformers/models/convbert/convert_convbert_original_tf1_checkpoint_to_pytorch_and_tf2.py,sha256=2j1QS0SBJPf1EA5Vulhre8iOvQ7nmFP-Dp6LsjVwwaE,2080
transformers/models/convbert/modeling_convbert.py,sha256=F0hdazX8I4hSlWRqf1zt4olSWr6gx-XRgtkCcEmLsf8,54697
transformers/models/convbert/modeling_tf_convbert.py,sha256=a_BCLiwT0Y1BgW9cGj5x3-JN6KU_M2iRoAU6LyljHEQ,58768
transformers/models/convbert/tokenization_convbert.py,sha256=E82NNDbKn2FwLyqu90wRFPbPQItz7bDPr1q8oGuottc,2216
transformers/models/convbert/tokenization_convbert_fast.py,sha256=3az76x_YtwSONZ973wqgCamLlsj3EXCHpECRIj1IG7w,2422
transformers/models/cpm/__init__.py,sha256=HRqcN66_579HtzB_p3CwyXvIK10ITOR02uIOyAUlns8,1100
transformers/models/cpm/tokenization_cpm.py,sha256=NDEa4PkPAjiHy1QcMMMcbbz1yIGBhGOZx9WrOY6rk-8,5653
transformers/models/ctrl/__init__.py,sha256=er5JdEvoPH-K--lojvel37JyzW0MAnX42JXDtLkKe24,2314
transformers/models/ctrl/configuration_ctrl.py,sha256=OQ-uZbfb-efDW_4F7oxKoL2ZFBMQfnN2fvWBJlmoXKA,5824
transformers/models/ctrl/modeling_ctrl.py,sha256=GjgrYEC29q-LJeABfjMyldJIRaK_J7DLSnBVGRQsScY,29015
transformers/models/ctrl/modeling_tf_ctrl.py,sha256=KMVavid4roBqwlBmDHJZSySGYHGaBzGdUgoX4DIDHlU,38193
transformers/models/ctrl/tokenization_ctrl.py,sha256=Gb1ogxdYT--TsNG8TIC0WGHsMtC4WgORO95XlBNIQOk,8504
transformers/models/deberta/__init__.py,sha256=ykQQ5_ilRz6rF1Au791TfvaqAp_1WGKa_Rzp1ACJeaE,2248
transformers/models/deberta/configuration_deberta.py,sha256=SNaXOHs1A9bo7r9_CBLpK-P55LTTVTdsDyQXMg3bZ6s,7628
transformers/models/deberta/modeling_deberta.py,sha256=0PslO1AjaiZzyx-C2pjT6fBieNWX6qQF0A88tgAKKYM,54099
transformers/models/deberta/tokenization_deberta.py,sha256=BsnRgwkYatUjm6lYrWW9mLmswkzV0zcgXP2Ll6o0T_I,10346
transformers/models/deberta/tokenization_deberta_fast.py,sha256=93HIVR1ZY9dRkC1OHQ1pDcTss34hsWDWIVvFDmRVtFk,9082
transformers/models/deberta_v2/__init__.py,sha256=2pwZbM4XA1xWqLJ9viVBmN3aqEic3efXcrmfxEYoomo,2073
transformers/models/deberta_v2/configuration_deberta_v2.py,sha256=qisVQyP_Wsx49WpXt-UPHwXEqKFT1Bh79iE2-yN7hxw,7372
transformers/models/deberta_v2/modeling_deberta_v2.py,sha256=jA3LJ1sh20Hb0ZoU-adVCbXku1QWYfq93legg3Yngo0,60591
transformers/models/deberta_v2/tokenization_deberta_v2.py,sha256=lEmSxZFxI2s3qNgT09mKp0a3PgBfgy_eWGmzjKT7HaQ,21489
transformers/models/deit/__init__.py,sha256=h34d4WRVvUcH2P48HWG0uK90tT9MOAR_ptYhBcw39q4,1947
transformers/models/deit/configuration_deit.py,sha256=q3SAkwL3APVQFG_58Q1TX8ldPkzciuiCAI-H4AOBu3U,5379
transformers/models/deit/convert_deit_timm_to_pytorch.py,sha256=L0oFx6LYxnMBLFW8McGKewqqGBXTGnoUShOm9yz7DGs,9000
transformers/models/deit/feature_extraction_deit.py,sha256=yc9q5mvGCpU1R1LZUnMoFdxM-JksHuODdGybZzD8kHU,7516
transformers/models/deit/modeling_deit.py,sha256=yWg5X3MLBWc0M0_VqVnXkGH-8Vvdwsi-mE3QRJYSfoQ,31573
transformers/models/detr/__init__.py,sha256=uLBDFKtezCM2UvNElWLhXTW2TpreaFR-tlQfIfeb0Kk,1900
transformers/models/detr/configuration_detr.py,sha256=GLD9JB5MpJzMJUDA0DOFu615xylVw34rtHNdynF2bU8,9986
transformers/models/detr/convert_detr_original_pytorch_checkpoint_to_pytorch.py,sha256=706Uraj_6meBTiNfJHHEcYfCHcSDzAYikQFI4glZRck,13304
transformers/models/detr/feature_extraction_detr.py,sha256=9zFrx7n3F_rDdK5AmINkcgr3CpR0HH8fLlZAaKTlt0Q,40828
transformers/models/detr/modeling_detr.py,sha256=vL7kL7UlmhqNZhjtyuIEvNjXy8HeV5Qj1XySNLcoUA0,107836
transformers/models/dialogpt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
transformers/models/dialogpt/convert_dialogpt_original_pytorch_checkpoint_to_pytorch.py,sha256=7yVhPLmBPKPzH8DjJC76cc7b8LgMGF2ldBmYjxXBMRE,1542
transformers/models/distilbert/__init__.py,sha256=407Gmi_b1whR5xHLA2WFAmDxN7ZpAxIMEd-U7D-DWNs,3469
transformers/models/distilbert/configuration_distilbert.py,sha256=_l2dKOO0QsvZ4Ke_iA0tga_4XjYWKGhqNjgyIQkKzYw,7276
transformers/models/distilbert/modeling_distilbert.py,sha256=1OJuy34hXoX95KpaujrJpxUE4dMfLAcNuDjkUad3WzA,39882
transformers/models/distilbert/modeling_tf_distilbert.py,sha256=MLW7nCQepM678t35_-HHxqwfqn16X654HTtNAeshE1E,49790
transformers/models/distilbert/tokenization_distilbert.py,sha256=d8Z9iefTiTEsbwnr9XItqzskfEEnnOAB_-AOa4kzYp4,3035
transformers/models/distilbert/tokenization_distilbert_fast.py,sha256=-KNiynUuBa_5hdkygpqjs_k4vJvTvIWSjF-yGcw1ycc,4056
transformers/models/dpr/__init__.py,sha256=RsOLAw138qc1-FoQNdZL_NPWD6klnMycywm33PfLPkk,3826
transformers/models/dpr/configuration_dpr.py,sha256=MRADjsuWRpGZYTKiSTIFnBVSmrVJK-08Ma_RQ5_6OpM,6939
transformers/models/dpr/convert_dpr_original_checkpoint_to_pytorch.py,sha256=5qPWZSb44QhFzOySnfcBuT3K1V1-ZH8klukzxSuXcrQ,6043
transformers/models/dpr/modeling_dpr.py,sha256=KsQHIsHKogsG0yiT2TV11SSzME00P9ofmJF0sIwlAY8,28713
transformers/models/dpr/modeling_tf_dpr.py,sha256=VOIN8gaPjr2mYn1Cp0u8S-yhRtuY8TYmkHofjbEU-Hs,37860
transformers/models/dpr/tokenization_dpr.py,sha256=RZV9ZkZ9ryZ0VowJ5HiI2olJ24m76XaJtlo0F-0l6KM,20037
transformers/models/dpr/tokenization_dpr_fast.py,sha256=aCFb2XO0ckV7VcRVQcDNU9NB5BmxBqnkdVEDlSluRIc,20519
transformers/models/electra/__init__.py,sha256=aVSQVDWB1QMIrEkdfcoBYT8_tKiU687gvDu0F1dvs-Y,4186
transformers/models/electra/configuration_electra.py,sha256=76U1cLSNqzsvCjddyw85NzZxm2uOvJTMr_7NoJ86AI0,9202
transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py,sha256=MOEFIHFKfG2WxwXM0TMQl7AmiSf5U7NPL-vVbFIyABs,2845
transformers/models/electra/modeling_electra.py,sha256=r1cwGcYqkPRW4r9-2S6WpACBP32RMsDFW7pg8POD4dI,61975
transformers/models/electra/modeling_flax_electra.py,sha256=s84SC1_aVLzNue5qpjL_arK4gmBvKf5KLP8ltiBAUXE,42701
transformers/models/electra/modeling_tf_electra.py,sha256=anOcNiG9waHqTLujFkyBg-xQwV-lJ9nKkD63It6JTBk,63334
transformers/models/electra/tokenization_electra.py,sha256=rb3nAbMxmJyq-cb44Ca-rCCeXPeIjSd3jO0WFZsK83g,2932
transformers/models/electra/tokenization_electra_fast.py,sha256=ophZMO96tYRDSwLutR-o5TULc0k8FWMF0k5EZVx99Co,3958
transformers/models/encoder_decoder/__init__.py,sha256=s_wPAF0AY_XJNDiI5bDmFd0S96wmxbYomZG27Odf_PM,1360
transformers/models/encoder_decoder/configuration_encoder_decoder.py,sha256=4p5_bAUE0Et_mbmPr2aDjJ3KTFum68DZ04fIyubvSlE,5040
transformers/models/encoder_decoder/modeling_encoder_decoder.py,sha256=kLGt2RE1ceRrjOdaNxkzK6MGCpC1NZnw3SysCDaqIs0,26150
transformers/models/flaubert/__init__.py,sha256=kJtlXCOOIlakrMxWr9hVFvxPSoIG6g_9Ir5Bqgitohc,3000
transformers/models/flaubert/configuration_flaubert.py,sha256=NC4Z-6_1POjLFq56ZraXbsugMF6gg_Mk614X6ER8CSQ,8932
transformers/models/flaubert/modeling_flaubert.py,sha256=szgNid8rpx23BW-AckFZIxh5iIrseLSuO1qIMhcX88s,17590
transformers/models/flaubert/modeling_tf_flaubert.py,sha256=QxxE7CFiHErUaND9YQA0y1EjeCwagQmtEjcrs4FVZc0,40272
transformers/models/flaubert/tokenization_flaubert.py,sha256=AclXmXd5bo932ikHjE3SMx3O8XdwizDROutYNXOUkOc,5634
transformers/models/fsmt/__init__.py,sha256=n-FV1sHqqhsYDfSunvpB01kVbctRQ15oqxfVk290vz0,1549
transformers/models/fsmt/configuration_fsmt.py,sha256=WgzZf_tLEyZc2DChFcI3i9QtZE6nUECicDzbulIUyCg,10332
transformers/models/fsmt/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py,sha256=1BmcjXkhypX_wZJA-ioao5V4MFGkSFjw89IQWTWt224,11261
transformers/models/fsmt/modeling_fsmt.py,sha256=oEpqmehcGXmfwlI9zbIUom-P80OeQ0bBpWPKRv5ktQo,53914
transformers/models/fsmt/tokenization_fsmt.py,sha256=2jqQC7bm8xkl20Zr_1VWzO2flXRgFMmRAqn8ULf3KF0,19528
transformers/models/funnel/__init__.py,sha256=cKF9oId3IFbf3jZTnvaRTfoHjQx2jo6m76X8UUFyW78,3479
transformers/models/funnel/configuration_funnel.py,sha256=9IfjsdHuM7BfYqV5KNV3e7O1aiAMkpJ_OvZ7QPywRJk,9492
transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py,sha256=iKNN_afXPjNMcPX0MYvmabhyAvsIcVnMiYuifogXhwE,2346
transformers/models/funnel/modeling_funnel.py,sha256=6Keja81WqGU-rAAyBgAcJ5i9BbrfHUPQFwTYPwc5ewA,66858
transformers/models/funnel/modeling_tf_funnel.py,sha256=4c4x74bel9DCr1Gkl-uvc3kH9VBzaZ_pSlXgW9eW3R4,78480
transformers/models/funnel/tokenization_funnel.py,sha256=Bm5zf8wblvVBkBAsXoQBrkrm-w1A115cqpB5f7xC4_w,5374
transformers/models/funnel/tokenization_funnel_fast.py,sha256=I_bcEn4TG7EePyDGInyJ0pmFW0gR-giKqSujyCfI9Lo,6927
transformers/models/gpt2/__init__.py,sha256=8-D8VXEsbHWD9tmqweyqq5CnOYX6VkNxGfzQZaRZDdE,3123
transformers/models/gpt2/configuration_gpt2.py,sha256=kUpRhtADZAbjU2ySXzuSq6ON8wORzxwcdFHcDAOiiMM,11777
transformers/models/gpt2/convert_gpt2_original_tf_checkpoint_to_pytorch.py,sha256=vBV5t7JmzbZIiSDviZ7FXshxp3clEIkRLEsn74Dt8ZM,2539
transformers/models/gpt2/modeling_flax_gpt2.py,sha256=rFctE-bgEx-yXL781trg8I7rBWhAQke-npNa98VCpG8,25996
transformers/models/gpt2/modeling_gpt2.py,sha256=n3tCxoqn0lw8mW_7SivNwxMHTuV0oP9Bvjmsz9rdzWc,57110
transformers/models/gpt2/modeling_tf_gpt2.py,sha256=CUKfIwdt0KPqCbzMLioKMcWhkyd1en1-k0ZRAbVB5B0,45855
transformers/models/gpt2/tokenization_gpt2.py,sha256=AXkEtOyFMOvPNHhC3emnyyc5_tiywhRZIdh1Q6YhMZQ,12364
transformers/models/gpt2/tokenization_gpt2_fast.py,sha256=98egXbJ50ZooJHWYGX3btf1S5N8JW2E0gP4SaONa93Y,8131
transformers/models/gpt_neo/__init__.py,sha256=UsPoQamm04s36zzOWbr_y0UHkp9sw4_lPru4DAvrnCA,2146
transformers/models/gpt_neo/configuration_gpt_neo.py,sha256=17JmCAz6fg_q7P5r_vb7di06SmpVUQcD_YiySfw-j7k,8477
transformers/models/gpt_neo/convert_gpt_neo_mesh_tf_to_pytorch.py,sha256=yzNqtgcRsn8Yzqyj_fPr2LtNAneGGMLimOr0vd2QY1Y,2555
transformers/models/gpt_neo/modeling_flax_gpt_neo.py,sha256=D-69-XsN2kf-y-hej4BSpvpP3lOsfDNV46DpgsTWq7Q,27203
transformers/models/gpt_neo/modeling_gpt_neo.py,sha256=epo0FIDYt5Kq3Q6bUL6U1Mpauf2uLWGVxNEnwsPuaj4,48638
transformers/models/herbert/__init__.py,sha256=JGTluXj6Vu7J_PbT96u4fZn747W-kgDxds2XhZUiGgo,1353
transformers/models/herbert/tokenization_herbert.py,sha256=JUq0RLMRWVexD-mhH0BlIGwY5FZo4eJ42N38zQeSHDU,3318
transformers/models/herbert/tokenization_herbert_fast.py,sha256=CgFQgfanNDVcoVvlKy41mc-wcsRria0klVhlAvt4dKk,6637
transformers/models/hubert/__init__.py,sha256=uuaj_2QHmHGy_mF-vJa8hOUPX-YYjsJ6_30XeTXpAdo,2081
transformers/models/hubert/configuration_hubert.py,sha256=iLIWTsULEUKHp9yBwkXBw9ieNyCDFnMCH-SsMe8z4Rg,12793
transformers/models/hubert/convert_hubert_original_pytorch_checkpoint_to_pytorch.py,sha256=98f1RkezhoFw1o3DBc1JDn1RyPbgSXztIXvZf-PoyeU,10289
transformers/models/hubert/modeling_hubert.py,sha256=l57EfHdLE0f-sc8GnnKoh74T_QuOHXOs2JlV2CYmtPU,46180
transformers/models/hubert/modeling_tf_hubert.py,sha256=yfCBs7_g7vP-LlkjEFvspNoLc9NXRbfwDijpDNJ6qbg,69660
transformers/models/ibert/__init__.py,sha256=6m7pRKEpPY3whQX_tMykyj6GKISmN6EUL8j8muWcH8U,1931
transformers/models/ibert/configuration_ibert.py,sha256=oRekTvZ9n4RlAtSccsSwjwE_ixiqwrkWtOPXyv0mK6c,6985
transformers/models/ibert/modeling_ibert.py,sha256=04xNFgchSF2y29amqxBVdvesQHSZ9VPxxt77TCwNX2c,55422
transformers/models/ibert/quant_modules.py,sha256=PLC0kaGCLpba2U9KVSnKgr3TXHArzDn2KDSa-X9jb4E,30518
transformers/models/layoutlm/__init__.py,sha256=ty6xok63JL_NvbGJ526pApD9wRIlBHtg_w5HEGkRI0I,3074
transformers/models/layoutlm/configuration_layoutlm.py,sha256=8wyEXlhMbjtFSj22Um_alHP2s8jp4DLtR-hJhQ6xQUw,6160
transformers/models/layoutlm/modeling_layoutlm.py,sha256=DYnhFQo-p910IO8IPkbCyL_bwmNhcScTFaxM4I0nLDo,50874
transformers/models/layoutlm/modeling_tf_layoutlm.py,sha256=oyyha6WduufuzUSQZf1B-vXrhh16oNZt7nIRKSn6Huo,58199
transformers/models/layoutlm/tokenization_layoutlm.py,sha256=kMS2shyz8IHQeGOnrj73t7EfbFoyP9qXFuT55WWb8E8,2088
transformers/models/layoutlm/tokenization_layoutlm_fast.py,sha256=MfxzusXtkSkmF81M7uV6iO9cqjOB9Fyxg9Czu-AzoIk,2550
transformers/models/led/__init__.py,sha256=c_bqXSjH3VMk8RAZPB0KaYoiasfZTlX69Jj8107T_n0,2361
transformers/models/led/configuration_led.py,sha256=68helyVz8SbpwRRsU5htER8jv1M1yYmjS1fGnKwDqf0,8324
transformers/models/led/modeling_led.py,sha256=f7sa7jRQCO8oS8K4NrGjGCzFvj3Xitt31M3pbxUXxQc,134093
transformers/models/led/modeling_tf_led.py,sha256=5CCMf3b5AMQpGYZH-C2qRkjFSS9w6R4mUmvxzMJgGPc,120358
transformers/models/led/tokenization_led.py,sha256=ZVYzi7oCyeUICFvJs7EjiEOTq0uN7ZAX75hul7UKj7E,1864
transformers/models/led/tokenization_led_fast.py,sha256=S9p6bPl0oCT98TKS1-1adPuR3Kar_LqHZSIFnCISiTE,2031
transformers/models/longformer/__init__.py,sha256=2uyO1tL0mK-FFx1Nklnt_f_8x11njwTddQDST7E-jkc,3549
transformers/models/longformer/configuration_longformer.py,sha256=8C_Qxph7CC74BAkyXULGxaS5i9m6ZlTIATMAoB_eyg0,4123
transformers/models/longformer/convert_longformer_original_pytorch_lightning_to_pytorch.py,sha256=ZfHX4qCCudmvGCxJcOOIisAo2-1EKbW8SyR9UPhCxPI,3027
transformers/models/longformer/modeling_longformer.py,sha256=lgeIES6cTEsMCrKPIHSxw0A9enGviwf-vB_KPNDmrCo,110628
transformers/models/longformer/modeling_tf_longformer.py,sha256=mkPh_c-hLaSUb8sE0Ixf_v2IC9XiLHQTgDhG6BvYMVg,127235
transformers/models/longformer/tokenization_longformer.py,sha256=Gt_6dB7x3RbqYRPk8l-dmZ9ZRl4fUKe89GeRUFeHO4s,3160
transformers/models/longformer/tokenization_longformer_fast.py,sha256=RA73Key0gDYua8XSn6OJs9BRq6yW4ZUvO9vR-Faoh4g,4188
transformers/models/luke/__init__.py,sha256=2WlFJ8I6s1mN2FCQfiHN6uVV9Xxxsm2rZYcKsP_hlRs,1897
transformers/models/luke/configuration_luke.py,sha256=H1NBju4NqeJdE5jxfrOrbLj67SRMz57JNTEWaT0SXW4,6702
transformers/models/luke/convert_luke_original_pytorch_checkpoint_to_pytorch.py,sha256=RYSLt__QN6rXqeEYdBI-ON8GEA4Hi0f5xR-T2dGlQT4,6719
transformers/models/luke/modeling_luke.py,sha256=pnDPHVWAyYjx5SAUvmYHGmRHFdcN2nrimEMw1GxphK4,63091
transformers/models/luke/tokenization_luke.py,sha256=WTbawV4mP61BtIHEVz8FaSDE6HDhUJT3JLPIK5KS8nw,78060
transformers/models/lxmert/__init__.py,sha256=VSCoPWUxei8l0-Az8O8obTGn0MqGwbxtrjEq6TfxsTI,2749
transformers/models/lxmert/configuration_lxmert.py,sha256=Sg8R2l-M0P3EKLep-hPTCvlXguwRTrTnrMlhLqQlNUg,9843
transformers/models/lxmert/convert_lxmert_original_tf_checkpoint_to_pytorch.py,sha256=TLkhtn4gzn5Y0iFYvuIEv1IKya2hmydLuVF13imKBTE,2120
transformers/models/lxmert/modeling_lxmert.py,sha256=1qgzPq7dnR4pXzODORGCdqj4FBYF_9YkLYxGHoG2yZI,64442
transformers/models/lxmert/modeling_tf_lxmert.py,sha256=VcIQaVSg6gwVzA3raIay7HOABdF7gmgu3qBxPTXsY0s,66786
transformers/models/lxmert/tokenization_lxmert.py,sha256=mE4AnbatqGoQlBkgG7PZbOOZmB6YswiZLhNAEOAEIRQ,1736
transformers/models/lxmert/tokenization_lxmert_fast.py,sha256=isspPJGsydl6KZAJ529-Q2j1TxejJy--Batg4rvMcfM,2098
transformers/models/m2m_100/__init__.py,sha256=-PDNEt423yFNbzYDsLATTK17_eWBWe4AyKknWsar784,1828
transformers/models/m2m_100/configuration_m2m_100.py,sha256=LNRqyjg0HROfou-W0BuxZnTyjxpHUwVI5lsPBdxfz2A,7857
transformers/models/m2m_100/convert_m2m100_original_checkpoint_to_pytorch.py,sha256=j9TXiOt9GCxiEnXIaJ_LoO4VbOgxoJ-M9LA3ln4IjCg,3118
transformers/models/m2m_100/modeling_m2m_100.py,sha256=VqEXq2MKESmIwxuGRLbL7WmYuXFC8OqQXY3UvON_ABk,63602
transformers/models/m2m_100/tokenization_m2m_100.py,sha256=3ZkGd7pt7lrptKjpz5waSkjYBJi4oGBBoxSg0eEt3jM,16130
transformers/models/marian/__init__.py,sha256=mI62_GvVBm3iC7JhbJXFZZTD5v8lWL0BTL-9dyXmM4E,2531
transformers/models/marian/configuration_marian.py,sha256=cBlNeGokBQ8mrXwA9k2Wh6gZVUgIhZQXM9QRF_WNA0w,8388
transformers/models/marian/convert_marian_tatoeba_to_pytorch.py,sha256=Qq7SMe7zVkUSMzAchyYqUNfSovsbGsf2E37r6Sx69tM,33875
transformers/models/marian/convert_marian_to_pytorch.py,sha256=rWSml1KxoloTJVRH_7lQLJRToc9sOXVEkLaCMgwtw44,23461
transformers/models/marian/modeling_flax_marian.py,sha256=_GO-tImUJ7k_sb0vpQPQuop2SVMs7CqA3sIw9sLmq4w,63842
transformers/models/marian/modeling_marian.py,sha256=ilHieeEScWHFIfbc8PRGbIy0QiK7aiRg8aQdbAuR0QY,73840
transformers/models/marian/modeling_tf_marian.py,sha256=-QhRuT9u0dtZ2yAzBZIijUMPhvEAXnjbpx_CJmPX7-w,73427
transformers/models/marian/tokenization_marian.py,sha256=eieC6xC-MSE5ZFBZz6F9KFNAa9QFxJth-QM0_HP4f8M,15286
transformers/models/mbart/__init__.py,sha256=ttany1sj06obpWDO9H6a4K4k0uMtl_dANYCKH3H1jRs,3526
transformers/models/mbart/configuration_mbart.py,sha256=oBN2FZfyVs9Dx7TJyrmXaRsAiSKhOD1rj5pZChg8kqQ,8333
transformers/models/mbart/convert_mbart_original_checkpoint_to_pytorch.py,sha256=xVW9Mj-jd7X_MImJCgS52Aok1CGPf-E6u8ptvG1hK8o,3035
transformers/models/mbart/modeling_flax_mbart.py,sha256=eH-43cISAda25vLcYpUND4NtXxN1AzpAr6klg3rNWzU,74350
transformers/models/mbart/modeling_mbart.py,sha256=mp3KT291lUFW0lUVYq-RjWh7dQEBXAzuOQmFvABMl60,84451
transformers/models/mbart/modeling_tf_mbart.py,sha256=ro1TBzHE4u4jHz_PLVSiL2Xgk2s7snXI5s8I4zGPstQ,72804
transformers/models/mbart/tokenization_mbart.py,sha256=nN3DBCY5qFG7WgEGLlNa-1C0F_dOr7teewsr3ebLAwU,9967
transformers/models/mbart/tokenization_mbart50.py,sha256=eVmRDQ7_KjS3LX4JJ7FjG_ytHG-pUmWBvpJg9pFVB9U,16070
transformers/models/mbart/tokenization_mbart50_fast.py,sha256=e0AzTg9Ph_TUWD5nJDgpBB6BLNdqNEM_DZ6edpFcXBg,12145
transformers/models/mbart/tokenization_mbart_fast.py,sha256=nJ3d87Fvc9bVjnd0a5ya7HOSX4aMxPE09h9VlghiT8g,9921
transformers/models/megatron_bert/__init__.py,sha256=J74QYURqS4nS3uGTVzNGQE0JFbpEgc7I6aVAJarNspQ,2380
transformers/models/megatron_bert/configuration_megatron_bert.py,sha256=Gn8_FxqEy647wOATwJOlDP5qrbXwsekqU0uIduAclck,6956
transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py,sha256=PGwSEw2cfoJ9-zmJQubu8HkbkUO4my6vZxTW9GdcBAQ,9641
transformers/models/megatron_bert/modeling_megatron_bert.py,sha256=8UglDfPpqfCx9MDWoG1TG0-M-R65kXbTH0qb1lTs2Fc,78672
transformers/models/mmbt/__init__.py,sha256=oKjujs58kqQU1rd0pKmdk3BVoTE3Y0lD2UPtJN5k2ck,1360
transformers/models/mmbt/configuration_mmbt.py,sha256=2XO4AtN7FORz_C4DFB5jcey3ej8Ne--nBLILTt_FlAk,1654
transformers/models/mmbt/modeling_mmbt.py,sha256=UdF3xGAeZPQa7YBSmfXsXn2BFDOmwvnqswhHkhg-Deg,19250
transformers/models/mobilebert/__init__.py,sha256=pTyay2Q8edgio0nCKPPPGSmTuIkUoujHGEArTzwtfSY,3847
transformers/models/mobilebert/configuration_mobilebert.py,sha256=9S8PazcjFWLGS1EwhoaLYI5aw6LpZCdlwoGAdZBot20,7804
transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py,sha256=BuvaIR8XQQ0qxhqS6YLvJi8xTtLurInIjq-oX8Rz3yQ,2172
transformers/models/mobilebert/modeling_mobilebert.py,sha256=TpYisJ0_g_GtP0_OtelIVJ0DMYKjn0JufUYyaYrR2M8,66006
transformers/models/mobilebert/modeling_tf_mobilebert.py,sha256=EQUO46rqydkCe1Wmjl_Pv6DgMA0b5CMp5GkjoLmdHCQ,76628
transformers/models/mobilebert/tokenization_mobilebert.py,sha256=x1j_FozyvSuL6M25gOBVi0mapuqN-do7jdHPgfg84Qw,1729
transformers/models/mobilebert/tokenization_mobilebert_fast.py,sha256=w_PmDTnuGZuOT6wo0R0Kuyc-3gYT4FbZYlMGPsfyCE4,2094
transformers/models/mpnet/__init__.py,sha256=z93A_sDkyFENbpDASU-c0IahNLgZQ6oCyytI__rzZio,3224
transformers/models/mpnet/configuration_mpnet.py,sha256=Z37GxUh0QYaJ5D2xbyTJk9iMMpzkuQBACWGyBQ-mBSE,5659
transformers/models/mpnet/modeling_mpnet.py,sha256=UsIbL1FaF1aU8DFBRcqhtk3BSjqV7lTvnrlzUoFzuP0,41065
transformers/models/mpnet/modeling_tf_mpnet.py,sha256=oCSNAWZzXNyA0-qD9t-tqLw-4bKMB02ETc4IhsNdI7Q,55732
transformers/models/mpnet/tokenization_mpnet.py,sha256=XgFHruMI-lBd9s9-Tv8dZmDh6YoM-t_i1V6mJjTQL9A,22284
transformers/models/mpnet/tokenization_mpnet_fast.py,sha256=_qBHq94iKpu4npvZFkFjhce7rIKuKY7N22TI3u3RlIQ,9053
transformers/models/mt5/__init__.py,sha256=BpRQBwIvoDRY-RYkiwRxUHuefHthVL8kACYf4_4_Ji8,2221
transformers/models/mt5/configuration_mt5.py,sha256=pWs4pj25oQPyjbGOSjjS83ZCo1jIHqWHZ-7WjYGLCs0,5595
transformers/models/mt5/modeling_mt5.py,sha256=_-v2WcfNZscy_vhiMh_cYjjRfK3qd-gJ3zpv4jfBlw8,4250
transformers/models/mt5/modeling_tf_mt5.py,sha256=rqTMVqQjhG9aWwtqb-oPa2MSUerLr9uZxYeTsMO8riQ,3614
transformers/models/openai/__init__.py,sha256=Kuu_25SnPCLTik1aphtT0t9z0vEHcB8imx54lnIPLzg,3011
transformers/models/openai/configuration_openai.py,sha256=O3IMC-CClGaDXuiMUu2VlngEnrG1RsrgoI1gIkeIj4s,8395
transformers/models/openai/convert_openai_original_tf_checkpoint_to_pytorch.py,sha256=eY_jCzyK6B4SqOkD1SxrEJTjT08d4pPmziROb6vGHy4,2673
transformers/models/openai/modeling_openai.py,sha256=XXfjZJk49RwEomzSsbexpz8IMdqPcjPv6niodMkVtKc,35876
transformers/models/openai/modeling_tf_openai.py,sha256=PyfzXvlJ2GxJ-5ABM7jjjqk6vR5w-_Nkj0ZG-g7YYp8,41855
transformers/models/openai/tokenization_openai.py,sha256=7iPywP1lGU2kiLR9DGsI2y2vf9jxb7UllJE0FGN8Xeo,8507
transformers/models/openai/tokenization_openai_fast.py,sha256=-fV3Ltk1sc4Ak0fk9zD3FJXOPTu-Tbboa0j13k5Asl0,3085
transformers/models/pegasus/__init__.py,sha256=xMRWkit1zpQ0Gd6M1IN12ZzH9TfG0jmE7rcKMPDe4Bk,2575
transformers/models/pegasus/configuration_pegasus.py,sha256=BztBPBbZaSIW6c-BcB65eRfVuJY4bBQrByC9jrNOWIY,8344
transformers/models/pegasus/convert_pegasus_tf_to_pytorch.py,sha256=LgO0UB7YBsgZdJYPylRrLbUnRf8k3eRDKaw0JA8Glp8,5362
transformers/models/pegasus/modeling_pegasus.py,sha256=TUhLOW61xO53rwkPcTM_wB2VvfNXtwecj7HianhGpqw,73813
transformers/models/pegasus/modeling_tf_pegasus.py,sha256=-heh1S459xL_BDiGV8_CmeTFkAG1EF6A0Brj-OAWDgc,73429
transformers/models/pegasus/tokenization_pegasus.py,sha256=StexgdFd8CpLUPFUoagzddPhfLjrQNGkMgtJ6h8cRRE,13079
transformers/models/pegasus/tokenization_pegasus_fast.py,sha256=_T4R4TCDQi07dT921tLlOxEhzsjSDnrOUXeeKPdCtiw,9639
transformers/models/phobert/__init__.py,sha256=_V2Ueixxil_f1RBXGUwvMzf_6Yaw1lCKqYkzTIAgS-I,1116
transformers/models/phobert/tokenization_phobert.py,sha256=4TEecbfM4X8VrJq57Y9wLKcd0pmMyVIhbhwNmkTN4m8,13718
transformers/models/prophetnet/__init__.py,sha256=bIUI8PIPJkFOQAxFZBghnDMnsPj0f2_ZnwRYICtB4Ak,2031
transformers/models/prophetnet/configuration_prophetnet.py,sha256=-AnExbIck6EB4ROTThlTg6Adqa4JAbANbqbNvQMz_bU,8652
transformers/models/prophetnet/convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py,sha256=_oqlYxlvWPR_9BwJBmEQ58B1bg4P-yf3Sko9wX3lP40,7055
transformers/models/prophetnet/modeling_prophetnet.py,sha256=5z736aQsgS9bJ86VpYQtjQ4LXJHslabn20gYBh7CL8M,113056
transformers/models/prophetnet/tokenization_prophetnet.py,sha256=xakQyVlV_m4NqRE0r1dHJKlrwkNsROVDPPEMHDDTz_U,12509
transformers/models/rag/__init__.py,sha256=a0u0DIF98xLoV5VoTAHy24ZD9mM7I7NhqhaZPW3fACo,2052
transformers/models/rag/configuration_rag.py,sha256=GOnhkJ6WGHw77pMpN6xf4SpZ8lzyS9xXaOs64DVC6EA,9289
transformers/models/rag/modeling_rag.py,sha256=3EwNUQozuuvAL0d7KF79MrF7Do3yMjpRUXgx2fN_XxY,89845
transformers/models/rag/modeling_tf_rag.py,sha256=Su0pPCrQ0NmLUm5cWMYSb5K5qr8Ba1tzi6c0VCYtTmQ,97101
transformers/models/rag/retrieval_rag.py,sha256=xMTDJwBDUOw01X_9yHpK_wfGXg6uxwj4sNE9n-PN08k,29159
transformers/models/rag/tokenization_rag.py,sha256=08-s-tiVRhB0Yqxoea1Ep-gOaL2R7z2ia91773xXBD8,4898
transformers/models/reformer/__init__.py,sha256=nNXoNdsf884qBloou0TQCFapCiLv898FN_k4CYzyMck,2499
transformers/models/reformer/configuration_reformer.py,sha256=bNJM7XsYQSmk_ZHPoBBVVHQ7LPg3z0W14Gmcw_efIaM,13521
transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py,sha256=DcGRSF2im7h_TO8l0rFBk66d_6OhngYeSfyrGyutWuY,7790
transformers/models/reformer/modeling_reformer.py,sha256=7VWx7_MXLlQxjgtstNw7IgNSo2PRafS-wbTrgtq2PVY,110884
transformers/models/reformer/tokenization_reformer.py,sha256=gBxaBZmJoEFHjzk2P1xODP3O32uL10pjhINcgIPuJg4,6679
transformers/models/reformer/tokenization_reformer_fast.py,sha256=EMGT7cCWJFbD82G4IE59N4Tx-7GhJ54oXAdvO3XUXmU,4552
transformers/models/retribert/__init__.py,sha256=Db7873ksFIGPFJx1nEz7xGE8EHhsNnaFFKd7vdQnuWk,1976
transformers/models/retribert/configuration_retribert.py,sha256=W_myqgj6wt7Mfjyp2lh3sAKZKySDTHb5cyv2mC7eLHI,5357
transformers/models/retribert/modeling_retribert.py,sha256=98oQX_Bgy6vblcsDOC34IPY6UAYBeJPbPrwEuFHW8xQ,9449
transformers/models/retribert/tokenization_retribert.py,sha256=BcwImDIPRPUC9gtyTbhS9ebH2ucBmdTeVSyK-Zq1Xhg,1884
transformers/models/retribert/tokenization_retribert_fast.py,sha256=cuuATXGrP06EBv8m97qCcT1-ofFoogVHhSVuvzTrvss,2264
transformers/models/roberta/__init__.py,sha256=tulPJ-NSPHTfoK_NdcwhQV3EkPpVI3gzJmfxHAEEc2Q,4054
transformers/models/roberta/configuration_roberta.py,sha256=gRzEkedL_dw6shbgbr4GuoYVPb4VbelA3mdiqfevF_I,3454
transformers/models/roberta/convert_roberta_original_pytorch_checkpoint_to_pytorch.py,sha256=MmHtq9AhcXXd-V8Fz0XWC8n-PL-S1MSdFhTCVM6Cksk,8002
transformers/models/roberta/modeling_flax_roberta.py,sha256=ZvxHbBTTFS6ecp4cmRuCPq49uclwal48HQR77iZbmAI,37120
transformers/models/roberta/modeling_roberta.py,sha256=t_D8BPYqIHs6nQJ2xeVo0viiR79tTIN-Kc4prpFAKd8,67588
transformers/models/roberta/modeling_tf_roberta.py,sha256=lH0JfsAIKSHvVr46PhLKPLKWvW7xElGENUOiGg4tofs,59857
transformers/models/roberta/tokenization_roberta.py,sha256=inJ9xhlSsMcv2cTQ_apS6Xuk8GkvwsFXPgWKc82aJNg,12006
transformers/models/roberta/tokenization_roberta_fast.py,sha256=uxe_9O6ANxFLw1t0gaFfn9iUiTd6X4WaEFSHS3ahKdE,10916
transformers/models/roformer/__init__.py,sha256=6d-ATp-OlOjDenpwvwYkMZnpq1Y1mZEtX2os6yfhaSE,3512
transformers/models/roformer/configuration_roformer.py,sha256=dBFEhEwM-ebYom_a2_R23fhBlcCfJRvg4G-2E62Uox0,7442
transformers/models/roformer/convert_roformer_original_tf_checkpoint_to_pytorch.py,sha256=wXcik_5PQnfFOCQKCk7SEdWIOshUA8Fn-bus3FLcxCg,2212
transformers/models/roformer/modeling_roformer.py,sha256=voeQwiUx1Q1ck7vKRpAGYs3oUjYOiTBIMpai2rbbzAM,67008
transformers/models/roformer/modeling_tf_roformer.py,sha256=r1IVhCoowUm-n9nu8yOoOiKVqdjQOfwm81zGJnqFZo4,67531
transformers/models/roformer/tokenization_roformer.py,sha256=t-nm-1Yjrb5PgosmQZ2hXtj0qKsucK2TFAoQGeZMv8k,14478
transformers/models/roformer/tokenization_roformer_fast.py,sha256=IgBPYrE0KsD-HrKU1MusxY_CHRFcTcis161OgpPpRZk,8273
transformers/models/roformer/tokenization_utils.py,sha256=LGRWPOJf2U2YLOpsjzaR6Y1NtWNjHliHIKfVSd6ZuNw,2651
transformers/models/speech_to_text/__init__.py,sha256=1qy--WQ03zDxoF-kCi2RkZz_hmXa3DmaJPfXXdSzOow,2527
transformers/models/speech_to_text/configuration_speech_to_text.py,sha256=s1hj5wJouybXduJcSQ3bwfKYYYQhZxXZxYlaqHorGl4,9928
transformers/models/speech_to_text/convert_s2t_fairseq_to_tfms.py,sha256=asrE04TN3OWd5yT7L9yDqPYhuNqB82FGw56L5VbG_EA,4071
transformers/models/speech_to_text/feature_extraction_speech_to_text.py,sha256=rbtDO7OqjF5FGTGjwmDPU89Pvxy6n_Qx-BZiI58owls,10108
transformers/models/speech_to_text/modeling_speech_to_text.py,sha256=BOB1D16o00hhEBWZZz1awYROb_ozU63cQp_kbkkbRPM,64733
transformers/models/speech_to_text/processing_speech_to_text.py,sha256=4cZZgbmP1Crbc9XYGJX5Z72PYHOxlY8mnxw4Pbyv7iU,6929
transformers/models/speech_to_text/tokenization_speech_to_text.py,sha256=m3zNK0xuOS37FkcsZfmlw5DzQ3IX2vAQYlyXwWOAmTQ,10949
transformers/models/squeezebert/__init__.py,sha256=4gCRM4FVU2XKhsSf_VbYxyxLUoDqkc-KxgpsZDWrRWM,2510
transformers/models/squeezebert/configuration_squeezebert.py,sha256=M4M57OqBRwIe_Y71ecT9hUKrz9CO-bxiB_yFDcErBKE,7210
transformers/models/squeezebert/modeling_squeezebert.py,sha256=dCooKrhCdCE2osHmCVIUaoycPcZdPGaxsoZt4NsK2Wc,44244
transformers/models/squeezebert/tokenization_squeezebert.py,sha256=-sWtxf57A52qlfS7XwIfewRppAr8OftrxfV0xEs8UsM,2337
transformers/models/squeezebert/tokenization_squeezebert_fast.py,sha256=JXQVbkOSiaEgFtMvaWLG6M2cVL22y85crB4sTNGt6E8,2989
transformers/models/t5/__init__.py,sha256=-u3A6ueGC8rpxKjcKlrsRlDooSboWYssZLWrcHxq2IE,3042
transformers/models/t5/configuration_t5.py,sha256=Vg7u9e8DWojoz_PYZkrNUiL_O23x5eXgbjRqpyvQDZ8,8940
transformers/models/t5/convert_t5_original_tf_checkpoint_to_pytorch.py,sha256=hTwfWSLeVT9i8l8lRQ9ofEv2ntGTvgfM0UVZsA3LvCk,2107
transformers/models/t5/modeling_flax_t5.py,sha256=4RMRMKJ4ptzOkIBBYEZxEy4-u4xS8TNJM9cdslihjK4,68939
transformers/models/t5/modeling_t5.py,sha256=EQcKb0BnOTx8z1yRuDYG7fx3comU4Uj4zjASFFCzZdE,81418
transformers/models/t5/modeling_tf_t5.py,sha256=Q9HTjJebfchBEUEzGLwunueb_377OJbfdGGJqAjGiiY,74076
transformers/models/t5/tokenization_t5.py,sha256=qjvLzzMh5lCIkZtyPv4Y5e-vEjTpQnnvZQR9GyJU9KM,13155
transformers/models/t5/tokenization_t5_fast.py,sha256=bO8fzOuAZXWTI1o1mqiA1UisIZdXJ0aLs7CY_b5C5Wo,8622
transformers/models/tapas/__init__.py,sha256=jBUhjUUwsiSqjk1AgeP6XkxFMNkdRJffB9N_3AhHVxE,1879
transformers/models/tapas/configuration_tapas.py,sha256=ovPtzJgLjW4ppDSDvcocRVGmiXv9XoizwtdbKY9T2w8,13459
transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py,sha256=UDEBfWljuOIQexm-N3pChKLyg7gx-IQEsSHW7JomQ9s,5093
transformers/models/tapas/modeling_tapas.py,sha256=0UqlVo_UmZukhObFmIgSgNOgiAwYgrrfoQsPq0S5Od0,106883
transformers/models/tapas/tokenization_tapas.py,sha256=yFO0S_mB74wUIUVQ1puI9BTy6QeokM7TXohPEgX80Y0,119284
transformers/models/transfo_xl/__init__.py,sha256=uYpLphZEHNnLiRsbCNEYoRBLdhO3doyW9rETM69JDZY,2808
transformers/models/transfo_xl/configuration_transfo_xl.py,sha256=2bODKg3NEjwIXbjMiZ22SrsFKINOBR_C2-K9_G07ENs,8128
transformers/models/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py,sha256=lAVYBSr2ab3uDAhMw_8n33-4aoDyYQO9A-PNcAU0b5E,4923
transformers/models/transfo_xl/modeling_tf_transfo_xl.py,sha256=4OYvrmRvue_Ae5eZsNCHP2B80FZ74rJpf8iz5kxi4OY,48370
transformers/models/transfo_xl/modeling_tf_transfo_xl_utilities.py,sha256=iwocQ-kpV_dqAnUB6jPv76yHatVUYEXHPem3XFDAQAk,7588
transformers/models/transfo_xl/modeling_transfo_xl.py,sha256=iXD4CfbOyV4C4a8KM5IXMKMEq3LTquC4F4KdUqVQSlE,53495
transformers/models/transfo_xl/modeling_transfo_xl_utilities.py,sha256=sheazQjoBvIksNMffYTADjaMC6X1gSWr9hR_zQpCjUY,10694
transformers/models/transfo_xl/tokenization_transfo_xl.py,sha256=ZQmNR3exoYZboIxYs7HZsQSn386dEZYASkQRx6Rlclg,30667
transformers/models/visual_bert/__init__.py,sha256=flKX03g9KU9mf6v2LWDlWCeJMVAJZHjGnDOJBtUYTdc,2116
transformers/models/visual_bert/configuration_visual_bert.py,sha256=4wsh4LrnXNbGQ3lPdBkP4qxqPy0zaXhpGh2K2iB7cNo,8153
transformers/models/visual_bert/convert_visual_bert_original_pytorch_checkpoint_to_pytorch.py,sha256=BpXgEZ-5LdGIa0NK6BDZd_5VhKCqeWuu2oOQyUqcSRQ,5158
transformers/models/visual_bert/modeling_visual_bert.py,sha256=Rc43knmNLD6uI66vyZNK0fTHEOosTwrjhcopW-quAr0,67162
transformers/models/vit/__init__.py,sha256=rdATzgA1CfceD2RFwYyfD_Bs-OcSkAsXA0jsIINjPug,2159
transformers/models/vit/configuration_vit.py,sha256=LZ_aYYvTfKkd2HtwUD9w0Hk4Q_wNpUfr3j4JcFRGKy0,5272
transformers/models/vit/convert_vit_timm_to_pytorch.py,sha256=83K2Hli6kDDtSbzZVHMIAw9jZ0AAcukDUJMAq4Aiez0,9959
transformers/models/vit/feature_extraction_vit.py,sha256=-s5cwMYhHyov9LXIh145JIyWxiWlGHmaUJ-5uIA7vGI,6646
transformers/models/vit/modeling_flax_vit.py,sha256=vV__cL9a9Lguh2_ptAfjwtqavCJKdq6z8o-TZl-d-HY,22844
transformers/models/vit/modeling_vit.py,sha256=I4lK4yN84p206VqA-JjCleac2ctKQzZf0X3KGro_ygw,24782
transformers/models/wav2vec2/__init__.py,sha256=sR97F-tPBYyac6sgjD7rWD_jCIZgUrFVvOEnNQxTHGI,3145
transformers/models/wav2vec2/configuration_wav2vec2.py,sha256=rqIJsWPvw6xnHf_Q3EMn4Pbg28n0GLgMswKvA5ozwm8,15046
transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py,sha256=jzAZ6w7PsLx5gS--97KRVqu9GUB9RAA3N4DRHdVLm5E,10612
transformers/models/wav2vec2/feature_extraction_wav2vec2.py,sha256=laPduyLSgI7_o-U2YWbuC1o8fMAKJGJvmrNKWK7Y1g0,9625
transformers/models/wav2vec2/modeling_flax_wav2vec2.py,sha256=tPCN8hMXDXb0wgxue04ylUdMSA62AahUxubGiE6zXT0,50889
transformers/models/wav2vec2/modeling_tf_wav2vec2.py,sha256=aMx22BkJ_zmhDde-CDmnknaYmp0rpAHfARBZdR-8vS4,68358
transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=l2N3HuSaCTE6Ew5RI3gwunz_2M8MYpBks1Hik2Lifsg,66594
transformers/models/wav2vec2/processing_wav2vec2.py,sha256=XIwqEzES6C3KFQ_psUdZAx3xzWTfcG_FWDlXg8toUg8,7492
transformers/models/wav2vec2/tokenization_wav2vec2.py,sha256=H_n0WsQXC2w8uMmxw4nUBoiHouhRMWwea9I-K7V_QTA,24737
transformers/models/xlm/__init__.py,sha256=k9072VbB3P_guUxyLYurfp3i-i_742Hhv2AB9zfXUBg,2886
transformers/models/xlm/configuration_xlm.py,sha256=PQghZwWIoZHY_1Zpb-372ex47yjXiMbU_VrlyXX-7yM,11891
transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py,sha256=ixvKniYiujC5ZQCW3xYpAcaUSWTFKJTILkqoxX6374A,2981
transformers/models/xlm/modeling_tf_xlm.py,sha256=VhnIH5d3_iRBWPk_fxer0oEjq74kJlXaTZqeBr5TYgc,59142
transformers/models/xlm/modeling_xlm.py,sha256=F7pqqiUZg-7ewEp_R0Wxdc6O02DLar3mmmfDtXP_jUY,53247
transformers/models/xlm/tokenization_xlm.py,sha256=RbOclBOmU7Osy6PRQUxKkyt317mrjgJkzS1D76gjzzg,34429
transformers/models/xlm_prophetnet/__init__.py,sha256=6L2lF2laIfmnFUQgjiqWlX6Z2NINTURmFYVw2M5FJaI,1360
transformers/models/xlm_prophetnet/configuration_xlm_prophetnet.py,sha256=p2_MrOWHYRk9EoKvhunKbGlrJhReI67IzWbXkqmcG0s,1262
transformers/models/xlm_prophetnet/modeling_xlm_prophetnet.py,sha256=NuHvNMLA48Dp16WvauAWdRatIOO3e2BcY0AxUze7Vqk,7309
transformers/models/xlm_prophetnet/tokenization_xlm_prophetnet.py,sha256=5Ac0wV1ZGTVPjhWhu9v1vOZ_mOgK5yiHPqqxvAt_RC4,13840
transformers/models/xlm_roberta/__init__.py,sha256=bzi2itEbJxOmtX3z-cTUInyi78i9-q7ZQAgluZhmZcw,3477
transformers/models/xlm_roberta/configuration_xlm_roberta.py,sha256=a5oPK_7AkzVvQLDV3PelW1XfT4P4f2MQaeJxXi5IN58,2620
transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py,sha256=jYZyJRO_SxqQyvs9oLZY0sdvaBlFFlQatPO_sanhmHo,6353
transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=qURTcMrDr7VyG4hsQu0TojmZXtVJj29Z1fWIczQc_pw,5877
transformers/models/xlm_roberta/tokenization_xlm_roberta.py,sha256=YlJJLNWLfRc7MKQhaJzE5R5uuZQUUGzOQhfrvmww1nA,14051
transformers/models/xlm_roberta/tokenization_xlm_roberta_fast.py,sha256=NemGhCUw3gmt1TSkPSYSs8A3XTjQJ91rfGEyajPEITQ,9965
transformers/models/xlnet/__init__.py,sha256=ZOms6ohgB2FUsXhd2qxHQZZAjF4mUKk_Jo-BKWfE3PM,3421
transformers/models/xlnet/configuration_xlnet.py,sha256=lgX39bUkziVb4TcTvPKxSz2o2V0oHTfitfC3XErmSGc,11248
transformers/models/xlnet/convert_xlnet_original_tf_checkpoint_to_pytorch.py,sha256=3ozPE5V-X4QuheBEt1JzISTO22RrOHgKcVC8qL5HIAA,3695
transformers/models/xlnet/modeling_tf_xlnet.py,sha256=aUoiK307bvGvX0RftNTVfV7v1DnGcotYNwx12YLwQBI,81280
transformers/models/xlnet/modeling_xlnet.py,sha256=6EKSptAt-adpjO0YKqYz_9E3vI44uO8zYj8QkwG3EMw,91661
transformers/models/xlnet/tokenization_xlnet.py,sha256=cHoHZYvhLo2dsEbPqBbumLjpT6RHq7qDdYj6Pi89P70,14406
transformers/models/xlnet/tokenization_xlnet_fast.py,sha256=6DqHIr5Mv70OTPYqVZPjbXGVgu3bOwvDzTuW1zWbeX4,9944
transformers/onnx/__init__.py,sha256=rRHBpjRxesvUHnf2NTUJL16L9-SVGNkR1YmqRBkuDLE,829
transformers/onnx/__main__.py,sha256=KrSH8cy16dJKz_oeFHDBmvytrR65FNtC5weTAIZNiOg,5822
transformers/onnx/config.py,sha256=Kt7U7CUc4ZAX5LrdyCGATQsYKwK9IpCbdNFLE9u-qnM,7860
transformers/onnx/convert.py,sha256=eQGmvm1eJUfkjcVUFWCIBaiPVG7sJRdxSvbvSc5qd6c,8698
transformers/onnx/utils.py,sha256=bElAB-C3AN2l2A8lwUkG4purxXkEGBWStCM0AXVwREQ,2377
transformers/pipelines/__init__.py,sha256=ZUNpX9UwRFgTWzrMjpol48vWWUnkKic9W1X57d3FlhY,24467
transformers/pipelines/automatic_speech_recognition.py,sha256=S2LU1tl8-b1zrXgiqX7EU5DH6sshGNgCdzNuovSOADo,6526
transformers/pipelines/base.py,sha256=hYjw8-7Oti5PYkfkFCnU9y3814r2rO3i-SEM9JNWtts,30282
transformers/pipelines/conversational.py,sha256=akS3oT73dsJIdZHyXO_QKq5TEq3KXwfpv6Mj4zd_EyM,14841
transformers/pipelines/feature_extraction.py,sha256=y0R5TPrUc_A5tbl-5f1eSUDLt6JIotTof0kTIRpBHLA,3684
transformers/pipelines/fill_mask.py,sha256=FYeYCauzvK7QY8dn6iwTHxZRZZ2DSe1gTWApXvs3OeI,8780
transformers/pipelines/image_classification.py,sha256=8WsSma4gYtkPwyweMALIInPQ03npLsMPYmMR7SjZOXo,5155
transformers/pipelines/question_answering.py,sha256=RjPzKUt6quyA6cOrZRxfMJ8lWOffTaoZzmeGE-nYXR4,24463
transformers/pipelines/table_question_answering.py,sha256=QBg7iKJdGZwCVybM0xiGdUJtwVkKm2peHE62AWcvVzo,14037
transformers/pipelines/text2text_generation.py,sha256=SroS3fkdEZ7vxE735M0b-b7MoI8sHAHBhUij5JR6TU8,14756
transformers/pipelines/text_classification.py,sha256=LwWE0GL5BWrOv10aquipEXCuY56q9LRBz4aC52uVqFo,3194
transformers/pipelines/text_generation.py,sha256=6WDJi524pD9GdquT1q6TQko0frLVYs9IGCBp7bWDqUk,8974
transformers/pipelines/token_classification.py,sha256=e8tOlIsiHmxEjxXK8AXL7gZoG0KwJkdjYDclo_9n9ik,19373
transformers/pipelines/zero_shot_classification.py,sha256=rEkjPSHYE8Il-bTwyGTVDwVRACug-zHzde1Ag80eTfM,8455
transformers/sagemaker/__init__.py,sha256=WmEfdtVOQN3cizez_7qbfK_hVmDE1oTqQhV0Q7fNVuM,901
transformers/sagemaker/trainer_sm.py,sha256=7GsKLtjdMfKp98OwHD7RcBsl745OOwHAaBswkfLkfsE,1044
transformers/sagemaker/training_args_sm.py,sha256=fREG6PvrbXe0rmTiUHO0eAgISz7qAWXf5Ei3Ala2m6Y,4926
transformers/utils/__init__.py,sha256=pxGlUMJU0WSxDi6ULwroVNk8hgByUoEXqrCx22mnDPk,1520
transformers/utils/coco_classes.py,sha256=48U3Klkr1VryAxpimugM6YTRqhRXpK1u7X4btPXbjPs,1715
transformers/utils/dummy_flax_objects.py,sha256=JUvMktNEF-zUMxyf6se2i2uJ79p6R9zP1S64-oakZqI,19181
transformers/utils/dummy_pt_objects.py,sha256=NAaDJ6t2ZTMG5Nhy9pEfn27OuhMV2G7uXRPc6dZDCGU,88488
transformers/utils/dummy_sentencepiece_and_speech_objects.py,sha256=Vh24cqmfXyyo2XtduItNfznyVtP62-TYOSWVZaEmmaY,376
transformers/utils/dummy_sentencepiece_and_tokenizers_objects.py,sha256=99nhSTTd-ghn6A2Rxe8UOl18MsajH1y6KFXuyy07WhU,278
transformers/utils/dummy_sentencepiece_objects.py,sha256=Zzk98SIWHNWIEMMYycmBTP6IKNnxygyg2d4vzNFVaoE,4089
transformers/utils/dummy_speech_objects.py,sha256=j2XILitMMdU0AEtewjINfTUKfD3Qv2P2WSCGBizImaA,241
transformers/utils/dummy_tf_objects.py,sha256=HFmjmxg61GUb9cYtHS8bU-MAufWwJWLu3zYvMsDJ_eA,47447
transformers/utils/dummy_timm_and_vision_objects.py,sha256=Vu9aXQBtBXMIq9x91oYtajP2yJt6VYX6iNdzjM5c2PQ,1108
transformers/utils/dummy_timm_objects.py,sha256=LVLYwLIWD-7ck2WMJJYwxIWGiMwhRzIENBpE40YnPPw,810
transformers/utils/dummy_tokenizers_objects.py,sha256=BkWRVCqQPcd41jB4ecIEOEFKIFcQCscNJ9pYYMoFf9g,8684
transformers/utils/dummy_vision_objects.py,sha256=t_FHiZIy_gKDeChR9BtQVSyMW-VbzHPVa3R8kVn0D_E,916
transformers/utils/fx.py,sha256=8pdtfR560ZwOXlL0xTDmwOLjellDEjBrph9-tkfWQdk,14869
transformers/utils/hp_naming.py,sha256=kTCCyv7RT8cQJ3rb_o7MLtO3yhN0bcG72ZzN2M2mcOw,4971
transformers/utils/imagenet_classes.py,sha256=VHr_mLGsXZ6LWxC8N8dff0WkRbHoQ2NWz3DtDm52uSg,33616
transformers/utils/logging.py,sha256=huC6tvT0RixnkTdfcIsPcREVN0NoJYKrDS0Qkev4R90,7701
transformers/utils/model_parallel_utils.py,sha256=seImhvNcDKwtWL6-G7wPBZOw5Q2m6ZPLZvzSePidV2Y,2186
transformers/utils/modeling_auto_mapping.py,sha256=XXbRSLCxlgStQqz1dWcXPJiTUvQ6F1xJAIGyFtdGaOs,16415
transformers/utils/notebook.py,sha256=3aA2tIbtdiCoyLo4wDZ6w5MY7vqJ6_EbwztGkN4n9qw,14431
transformers/utils/sentencepiece_model_pb2.py,sha256=X9U2bJld-kTtVXLB_EVdSc3AVubf9_s1At9WXyA_JP8,39607
transformers/utils/versions.py,sha256=LH0KEy0FXVeyE7pv6LR-lBlVqVJUBy55KNpmiHWO2hY,4381
transformers-4.9.1.dist-info/LICENSE,sha256=d_1HEN757DwPYiWADgI18VpCWr1KiwNVkSf814JhIEk,11418
transformers-4.9.1.dist-info/METADATA,sha256=F3ivBbwrRTNdbyYmGutYGFyd0MsgZYbVKXPhvcaNbds,49509
transformers-4.9.1.dist-info/WHEEL,sha256=EVRjI69F5qVjm_YgqcTXPnTAv3BfSUr0WVAHuSP3Xoo,92
transformers-4.9.1.dist-info/entry_points.txt,sha256=NC_VjQxHu59c5WStu_7imUSlBjuk86IvLxhEtlrO-2k,82
transformers-4.9.1.dist-info/top_level.txt,sha256=GLBaeTo_CSdhnHvbxQ0kzpEHdlLuA_33foIogaWxntI,13
transformers-4.9.1.dist-info/RECORD,,