File size: 3,990 Bytes
4a11192
a63a8f0
 
 
 
 
 
 
df2d67a
 
7dc15f7
569e3d3
a63a8f0
 
 
 
 
16dcabb
 
 
 
 
 
 
 
 
 
 
a63a8f0
f1cebe3
a63a8f0
 
f1cebe3
a63a8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16dcabb
 
 
 
 
 
 
 
 
 
a63a8f0
 
a9eb656
fb3682d
d25028d
f9a7813
a63a8f0
f6a1585
4c3f09a
 
fb3682d
 
 
f6a1585
fb3682d
f6a1585
e8f35b2
 
c08838c
 
e8f35b2
c08838c
beef649
f1efb9e
dd15e4f
326497b
c19881c
beef649
067b45f
dd15e4f
c08838c
a63a8f0
9b351ae
a63a8f0
 
6644653
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

import gradio as gr
import os
import requests
import json
from huggingface_hub import login


# myip = os.environ["0.0.0.0"]
# myport = os.environ["80"]
myip = "34.221.7.12"
myport=8000

is_spaces = True if "SPACE_ID" in os.environ else False

is_shared_ui = False

from css_html_js import custom_css

from about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)


def excute_udiff(diffusion_model_id, concept, step):
    print(f"my IP is {myip}, my port is {myport}")
    print(f"my input is diffusion_model_id: {diffusion_model_id}, concept: {concept}, attacker: {attacker}")
    result = requests.post('http://{}:{}/udiff'.format(myip, myport), json={"diffusion_model_id": diffusion_model_id, "concept": concept, "step": step})
    result = result.text[1:-1]
    
    return result


css = '''
    .instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
    .arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
    #component-4, #component-3, #component-10{min-height: 0}
    .duplicate-button img{margin: 0}
    #img_1, #img_2, #img_3, #img_4{height:15rem}
    #mdStyle{font-size: 0.7rem}
    #titleCenter {text-align:center}
'''


with gr.Blocks(css=custom_css) as demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

#     gr.Markdown("# Demo of UnlearnDiffAtk.")
#     gr.Markdown("### UnlearnDiffAtk is an effective and efficient adversarial prompt generation approach for unlearned diffusion models(DMs).")
# #     gr.Markdown("####For more details, please visit the [project](https://www.optml-group.com/posts/mu_attack), 
# # check the [code](https://github.com/OPTML-Group/Diffusion-MU-Attack), and read the [paper](https://arxiv.org/abs/2310.11868).")
#     gr.Markdown("### Please notice that the process may take a long time, but the results will be saved. You can try it later if it waits for too long.")
    

    with gr.Row() as udiff:
        with gr.Row():
            drop = gr.Dropdown(["Object-Church", "Object-Parachute", "Object-Garbage","Style-Van Gogh",
                               "Concept-Nudity", "Concept-Violence", "Concept-Illegal Activity", "None"], 
                               label="Unlearning undesirable")
        with gr.Column():
            # gr.Markdown("Please upload your model id.")
            drop_model = gr.Dropdown(["Erased Stable Diffusion(ESD)", "Forget-me-not(FMN)", "Ablating concepts(AC)","Unified Concept Editing(UCE)", "(Safe Latent Diffusion)SLD"], 
                               label="Unlearned DMs")
            # diffusion_model_T = gr.Textbox(label='diffusion_model_id')
            # concept = gr.Textbox(label='concept')
            # attacker = gr.Textbox(label='attacker')

            # start_button = gr.Button("Attack!")

        with gr.Column():
             shown_columns_step = gr.Slider(
                            0, 100, value=40, 
                            step=1, label="Attack Steps", info="Choose between 0 and 100",
                            interactive=True,)
    with gr.Row() as attack:
        with gr.Column(min_width=260):
            text_input = gr.Textbox(label="Input Prompt")
            img1 = gr.Image("images/cheetah.jpg",label="Image Generated by Input Prompt",width=260,show_share_button=False,show_download_button=False)
        with gr.Column():
            start_button = gr.Button("UnlearnDiffAtk!",size='lg')
        with gr.Column(min_width=260):
            text_ouput = gr.Textbox(label="Prompt Genetated by UnlearnDiffAtk")
            img2 = gr.Image("images/cheetah.jpg",label="Image Gnerated by Prompt of UnlearnDiffAtk",width=260,show_share_button=False,show_download_button=False)
            

        start_button.click(fn=excute_udiff, inputs=[drop_model, drop, shown_columns_step], outputs=[text_ouput], api_name="udiff")


demo.queue().launch(server_name='0.0.0.0',share=True)