# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import torch import math import numpy as np from typing import NamedTuple import open3d as o3d class BasicPointCloud(NamedTuple): points : np.array colors : np.array normals : np.array def to_open3d_point_cloud(basic_point_cloud: BasicPointCloud) -> o3d.geometry.PointCloud: o3d_pc = o3d.geometry.PointCloud() o3d_pc.points = o3d.utility.Vector3dVector(basic_point_cloud.points) o3d_pc.colors = o3d.utility.Vector3dVector(basic_point_cloud.colors) return o3d_pc def geom_transform_points(points, transf_matrix): P, _ = points.shape ones = torch.ones(P, 1, dtype=points.dtype, device=points.device) points_hom = torch.cat([points, ones], dim=1) points_out = torch.matmul(points_hom, transf_matrix.unsqueeze(0)) denom = points_out[..., 3:] + 0.0000001 return (points_out[..., :3] / denom).squeeze(dim=0) def getWorld2View(R, t): Rt = np.zeros((4, 4)) Rt[:3, :3] = R.transpose() Rt[:3, 3] = t Rt[3, 3] = 1.0 return np.float32(Rt) def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0): Rt = np.zeros((4, 4)) Rt[:3, :3] = R.transpose() Rt[:3, 3] = t Rt[3, 3] = 1.0 C2W = np.linalg.inv(Rt) cam_center = C2W[:3, 3] cam_center = (cam_center + translate) * scale C2W[:3, 3] = cam_center Rt = np.linalg.inv(C2W) return np.float32(Rt) def getWorld2View2_torch(R, t, translate=torch.tensor([0.0, 0.0, 0.0]), scale=1.0): translate = torch.tensor(translate, dtype=torch.float32) # Initialize the transformation matrix Rt = torch.zeros((4, 4), dtype=torch.float32) Rt[:3, :3] = R.t() # Transpose of R Rt[:3, 3] = t Rt[3, 3] = 1.0 # Compute the inverse to get the camera-to-world transformation C2W = torch.linalg.inv(Rt) cam_center = C2W[:3, 3] cam_center = (cam_center + translate) * scale C2W[:3, 3] = cam_center # Invert again to get the world-to-view transformation Rt = torch.linalg.inv(C2W) return Rt def getProjectionMatrix(znear, zfar, fovX, fovY): tanHalfFovY = math.tan((fovY / 2)) tanHalfFovX = math.tan((fovX / 2)) top = tanHalfFovY * znear bottom = -top right = tanHalfFovX * znear left = -right P = torch.zeros(4, 4) z_sign = 1.0 P[0, 0] = 2.0 * znear / (right - left) P[1, 1] = 2.0 * znear / (top - bottom) P[0, 2] = (right + left) / (right - left) P[1, 2] = (top + bottom) / (top - bottom) P[3, 2] = z_sign P[2, 2] = z_sign * zfar / (zfar - znear) P[2, 3] = -(zfar * znear) / (zfar - znear) return P def fov2focal(fov, pixels): return pixels / (2 * math.tan(fov / 2)) def focal2fov(focal, pixels): return 2*math.atan(pixels/(2*focal))