# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import torch from scene import Scene import os from tqdm import tqdm from os import makedirs from gaussian_renderer import render_test as render import torchvision from utils.general_utils import safe_state from argparse import ArgumentParser from arguments import ModelParams, PipelineParams, get_combined_args from gaussian_renderer import GaussianModel from utils.pose_utils import get_tensor_from_camera from utils.camera_utils import generate_interpolated_path from utils.camera_utils import visualizer import cv2 import numpy as np import imageio def save_interpolate_pose(model_path, iter, n_views=0): org_pose = np.load(model_path + f"pose/pose_{iter}.npy") visualizer(org_pose, ["green" for _ in org_pose], model_path + "pose/poses_optimized.png") # n_interp = int(10 * 30 / n_views) # 10second, fps=30 # all_inter_pose = [] # for i in range(n_views-1): # tmp_inter_pose = generate_interpolated_path(poses=org_pose[i:i+2], n_interp=n_interp) # all_inter_pose.append(tmp_inter_pose) # all_inter_pose = np.array(all_inter_pose).reshape(-1, 3, 4) all_inter_pose = org_pose inter_pose_list = [] for p in all_inter_pose: tmp_view = np.eye(4) tmp_view[:3, :3] = p[:3, :3] tmp_view[:3, 3] = p[:3, 3] inter_pose_list.append(tmp_view) inter_pose = np.stack(inter_pose_list, 0) visualizer(inter_pose, ["blue" for _ in inter_pose], model_path + "pose/poses_interpolated.png") np.save(model_path + "pose/pose_interpolated.npy", inter_pose) def images_to_video(image_folder, output_video_path, fps=30): """ Convert images in a folder to a video. Args: - image_folder (str): The path to the folder containing the images. - output_video_path (str): The path where the output video will be saved. - fps (int): Frames per second for the output video. """ images = [] for filename in sorted(os.listdir(image_folder)): if filename.endswith(('.png', '.jpg', '.jpeg', '.JPG', '.PNG')): image_path = os.path.join(image_folder, filename) image = imageio.imread(image_path) images.append(image) imageio.mimwrite(output_video_path, images, fps=fps) def render_set(model_path, name, iteration, views, gaussians, pipeline, background): render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders") makedirs(render_path, exist_ok=True) for idx, view in enumerate(tqdm(views, desc="Rendering progress")): camera_pose = get_tensor_from_camera(view.world_view_transform.transpose(0, 1)) rendering = render( view, gaussians, pipeline, background, camera_pose=camera_pose )["render"] gt = view.original_image[0:3, :, :] torchvision.utils.save_image( rendering, os.path.join(render_path, "{0:05d}".format(idx) + ".png") ) def render_sets( dataset: ModelParams, iteration: int, pipeline: PipelineParams, skip_train: bool, skip_test: bool, args, ): # Applying interpolation # save_interpolate_pose(dataset.model_path, iteration, args.n_views) save_interpolate_pose(dataset.model_path, iteration) with torch.no_grad(): gaussians = GaussianModel(dataset.sh_degree) scene = Scene(dataset, gaussians, load_iteration=iteration, opt=args, shuffle=False) bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0] background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") # render interpolated views render_set( dataset.model_path, "interp", scene.loaded_iter, scene.getTrainCameras(), gaussians, pipeline, background, ) if args.get_video: image_folder = os.path.join(dataset.model_path, f'interp/ours_{args.iteration}/renders') output_video_file = os.path.join(dataset.model_path, f'rendered.mp4') images_to_video(image_folder, output_video_file, fps=15) if __name__ == "__main__": # Set up command line argument parser parser = ArgumentParser(description="Testing script parameters") model = ModelParams(parser, sentinel=True) pipeline = PipelineParams(parser) parser.add_argument("--iteration", default=-1, type=int) parser.add_argument("--skip_train", action="store_true") parser.add_argument("--skip_test", action="store_true") parser.add_argument("--quiet", action="store_true") parser.add_argument("--get_video", action="store_true") parser.add_argument("--n_views", default=None, type=int) parser.add_argument("--scene", default=None, type=str) args = get_combined_args(parser) print("Rendering " + args.model_path) # Initialize system state (RNG) # safe_state(args.quiet) args.eval = False render_sets( model.extract(args), args.iteration, pipeline.extract(args), args.skip_train, args.skip_test, args, )