#! /bin/bash GPU_ID=0 DATA_ROOT_DIR="results" DATASETS=( davis_rearranged ) SCENES=( blackswan camel car-shadow dog horsejump-high motocross-jump parkour soapbox ) N_VIEWS=( 50 50 40 50 50 40 50 50 ) # increase iteration to get better metrics (e.g. gs_train_iter=5000) gs_train_iter=4000 tag="testing_pnsr" for i in "${!SCENES[@]}"; do for DATASET in "${DATASETS[@]}"; do SCENE=${SCENES[$i]} N_VIEW=${N_VIEWS[$i]} # SOURCE_PATH must be Absolute path SOURCE_PATH=${DATA_ROOT_DIR}/${DATASET}/${SCENE}/ MODEL_PATH=${DATA_ROOT_DIR}/${DATASET}/${SCENE}/${tag}_${gs_train_iter}/ CMD_T="CUDA_VISIBLE_DEVICES=${GPU_ID} python -W ignore ./train_test_psnr.py \ -s ${SOURCE_PATH} \ -m ${MODEL_PATH} \ --n_views ${N_VIEW} \ --scene ${SCENE} \ --iter ${gs_train_iter} \ --optim_pose \ --dataset davis \ --gt_dynamic_mask data/davis/DAVIS/Annotations/480p \ " echo "========= ${DATASET}/${SCENE}: Train: jointly optimize pose with dynamic masking =========" echo $CMD_T eval $CMD_T done done python scripts/get_testing_psnr_davis.py