das3r / train_gui.py
Kai422kx's picture
aggregate all scripts into one function
60fd7ba
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import numpy as np
import torch
from PIL import Image
from random import randint
from utils_das3r.loss_utils import l1_loss, ssim
from gaussian_renderer import render, network_gui, render_confidence
import sys
from scene import Scene, GaussianModel
from utils_das3r.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils_das3r.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from utils_das3r.pose_utils import get_camera_from_tensor
from utils_das3r.vo_eval import load_traj, eval_metrics, plot_trajectory
from utils_das3r.gui_utils import orbit_camera, OrbitCamera
import dearpygui.dearpygui as dpg
from scipy.spatial.transform import Rotation
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
from time import perf_counter, time
def c2w_to_tumpose(c2w):
"""
Convert a camera-to-world matrix to a tuple of translation and rotation
input: c2w: 4x4 matrix
output: tuple of translation and rotation (x y z qw qx qy qz)
"""
# convert input to numpy
c2w = c2w
c2w = np.linalg.inv(c2w)
xyz = c2w[:3, -1]
rot = Rotation.from_matrix(c2w[:3, :3])
qx, qy, qz, qw = rot.as_quat()
tum_pose = np.concatenate([xyz, [qw, qx, qy, qz]])
return tum_pose
class GUI:
def __init__(self, gui, w, h) -> None:
self.gui = gui
# For UI
self.visualization_mode = 'RGB'
self.W, self.H = w*2, h*2
self.cam = OrbitCamera(self.W, self.H, r=5, fovy=50)
self.mode = "render"
self.seed = "random"
self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32)
self.buffer_image_gt = np.ones((self.W//2, self.H//2, 3), dtype=np.float32)
self.buffer_image_dynamic_blend = np.ones((self.W//2, self.H//2, 3), dtype=np.float32)
self.buffer_depth_model = np.ones((self.W//2, self.H//2, 3), dtype=np.float32)
self.buffer_dynamic_blend_gt = np.ones((self.W//2, self.H//2, 3), dtype=np.float32)
self.buffer_depth_gt = np.ones((self.W//2, self.H//2, 3), dtype=np.float32)
self.buffer_conf_rendered = np.ones((self.W//2, self.H//2, 3), dtype=np.float32)
self.buffer_image_traj = np.ones((550, 300, 3), dtype=np.float32)
self.training = False
def __del__(self):
if self.gui:
dpg.destroy_context()
def register_dpg(self):
### register texture
with dpg.texture_registry(show=False):
dpg.add_raw_texture(
self.W,
self.H,
self.buffer_image,
format=dpg.mvFormat_Float_rgb,
tag="_texture",
)
dpg.add_raw_texture(
self.W//2,
self.H//2,
self.buffer_image_gt,
format=dpg.mvFormat_Float_rgb,
tag="_texture_gt",
)
dpg.add_raw_texture(
self.W//2,
self.H//2,
self.buffer_image_gt,
format=dpg.mvFormat_Float_rgb,
tag="_texture_dynamic_blend",
)
dpg.add_raw_texture(
self.W//2,
self.H//2,
self.buffer_depth_model,
format=dpg.mvFormat_Float_rgb,
tag="_texture_depth_model",
)
dpg.add_raw_texture(
550,
300,
self.buffer_depth_model,
format=dpg.mvFormat_Float_rgb,
tag="_texture_traj",
)
dpg.add_raw_texture(
self.W//2,
self.H//2,
self.buffer_conf_rendered,
format=dpg.mvFormat_Float_rgb,
tag="_texture_conf",
)
dpg.add_raw_texture(
self.W//2,
self.H//2,
self.buffer_dynamic_blend_gt,
format=dpg.mvFormat_Float_rgb,
tag="_texture_dynamic_blend_gt",
)
### register window
# the rendered image, as the primary window
with dpg.window(
tag="_primary_window",
width=self.W,
height=self.H,
pos=[0, 0],
no_move=True,
no_title_bar=True,
no_scrollbar=True,
):
# add the texture
dpg.add_image("_texture")
# dpg.set_primary_window("_primary_window", True)
# Show model rendered depth image
with dpg.window(
tag="_rendered_conf_window",
label="GS Staticness",
width=self.W//2,
height=self.H//2,
pos=[0, self.H],
no_move=True,
no_scrollbar=True,
):
dpg.add_image("_texture_conf")
with dpg.window(
tag="_dynamic_blend_window_gt",
label="GT Dynamic Mask",
width=self.W//2,
height=self.H//2,
pos=[self.W//2, self.H],
no_move=True,
no_scrollbar=True,
):
dpg.add_image("_texture_dynamic_blend_gt")
# Show ground truth RGB image
with dpg.window(
tag="_ground_truth_window",
label="Ground Truth RGB",
width=self.W//2,
height=self.H//2,
pos=[0, self.H + self.H//2],
no_move=True,
no_scrollbar=True,
):
dpg.add_image("_texture_gt")
# Show ground truth RGB image
with dpg.window(
tag="_dynamic_blend_window",
label="Model Pred Dynamic Mask",
width=self.W//2,
height=self.H//2,
pos=[self.W//2, self.H + self.H//2],
no_move=True,
no_scrollbar=True,
):
dpg.add_image("_texture_dynamic_blend")
# pose
with dpg.window(
tag="_pose_eval_window",
label="Pose Evaluation",
width=600,
height=self.H,
pos=[self.W, self.H],
no_move=True,
no_scrollbar=True,
):
dpg.add_text("", tag="_pose_log_input")
dpg.add_image("_texture_traj")
# control window
with dpg.window(
tag="_info_window",
label="Info",
width=600,
height=self.H,
pos=[self.W, 0],
no_move=True,
no_scrollbar=True,
):
dpg.add_text("Loss: ", tag="_loss_log")
dpg.add_text("Training PSNR: ", tag="_pnsr_log")
### register camera handler
def callback_camera_drag_rotate_or_draw_mask(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.orbit(dx, dy)
self.need_update = True
def callback_camera_wheel_scale(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
delta = app_data
self.cam.scale(delta)
self.need_update = True
def callback_camera_drag_pan(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.pan(dx, dy)
self.need_update = True
with dpg.handler_registry():
# for camera moving
dpg.add_mouse_drag_handler(
button=dpg.mvMouseButton_Left,
callback=callback_camera_drag_rotate_or_draw_mask,
)
dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale)
dpg.add_mouse_drag_handler(
button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan
)
dpg.create_viewport(
title="Gaussian",
width=self.W + 600,
height=self.H + self.H + (45 if os.name == "nt" else 0),
resizable=False,
)
### global theme
with dpg.theme() as theme_no_padding:
with dpg.theme_component(dpg.mvAll):
# set all padding to 0 to avoid scroll bar
dpg.add_theme_style(
dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core
)
dpg.add_theme_style(
dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core
)
dpg.add_theme_style(
dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core
)
dpg.bind_item_theme("_primary_window", theme_no_padding)
dpg.setup_dearpygui()
### register a larger font
# get it from: https://github.com/lxgw/LxgwWenKai/releases/download/v1.300/LXGWWenKai-Regular.ttf
if os.path.exists("LXGWWenKai-Regular.ttf"):
with dpg.font_registry():
with dpg.font("LXGWWenKai-Regular.ttf", 18) as default_font:
dpg.bind_font(default_font)
dpg.show_viewport()
@torch.no_grad()
def test_step(self, vstacks, iteration, gaussians, pipe, bg, seq, pose_path, pose_eval_interval=50, eval_pose=True, msg=None):
for k, v in msg.items():
dpg.set_value(k, str(v))
if eval_pose and (iteration % pose_eval_interval ==0 or iteration == 1):
poses = np.load(pose_path)
tt = np.arange(len(poses)).astype(float)
tum_poses = [c2w_to_tumpose(p) for p in poses]
tum_poses = np.stack(tum_poses, 0)
pred_traj = [tum_poses, tt]
gt_traj_file = f'/home/remote/data/sintel/training/camdata_left/{seq}'
gt_traj = load_traj(gt_traj_file=gt_traj_file)
_, ate, rpe_trans, rpe_rot = eval_metrics(
pred_traj, gt_traj
)
pose_eval = f'iter: {iteration} | ATE: {ate:.5f}, RPE trans: {rpe_trans:.5f}, RPE rot: {rpe_rot:.5f}'
print(pose_eval)
if self.gui:
traj = plot_trajectory(
pred_traj, gt_traj, title=seq
)
dpg.set_value("_pose_log_input", pose_eval)
self.buffer_image_traj = traj
dpg.set_value(
"_texture_traj", self.buffer_image_traj
)
if self.gui:
fps = 4
viewpoint_cam = vstacks[int(time()*fps)%len(vstacks)]
pose = gaussians.get_RT(viewpoint_cam.uid)
self.cur_cam = viewpoint_cam
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, camera_pose=pose)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
buffer_image = image # [3, H, W]
buffer_image = torch.nn.functional.interpolate(
buffer_image.unsqueeze(0),
size=(self.H, self.W),
mode="bilinear",
align_corners=False,
).squeeze(0)
psnr = gaussians._conf_static[self.cur_cam.uid].unsqueeze(0).repeat(3, 1, 1)
buffer_conf_rendered = torch.nn.functional.interpolate(
psnr.unsqueeze(0),
size=(self.H//2, self.W//2),
mode="bilinear",
align_corners=False,
).squeeze(0)
self.buffer_conf_rendered = (
buffer_conf_rendered.permute(1, 2, 0)
.contiguous()
.clamp(0, 1)
.contiguous()
.detach()
.cpu()
.numpy()
)
self.buffer_image = (
buffer_image.permute(1, 2, 0)
.contiguous()
.clamp(0, 1)
.contiguous()
.detach()
.cpu()
.numpy()
)
gt_image = self.cur_cam.original_image
self.buffer_image_gt = (
gt_image.permute(1, 2, 0)
.contiguous()
.clamp(0, 1)
.contiguous()
.detach()
.cpu()
.numpy()
)
alpha = 0.5
dynamic_mask = self.cur_cam.dyna_avg_map
buffer_image_dynamic_blend = (alpha * self.cur_cam.original_image.cpu().permute(1, 2, 0) + (1 - alpha) * dynamic_mask[:, :, None].cpu())
self.buffer_image_dynamic_blend = (
buffer_image_dynamic_blend
.contiguous()
.clamp(0, 1)
.contiguous()
.detach()
.cpu()
.numpy()
)
alpha = 0.5
if hasattr(self.cur_cam, 'gt_dynamic_mask'):
dynamic_mask = self.cur_cam.gt_dynamic_mask
buffer_dynamic_blend_gt = (alpha * self.cur_cam.original_image.cpu().permute(1, 2, 0) + (1 - alpha) * dynamic_mask.cpu().permute(1, 2, 0))
else:
buffer_dynamic_blend_gt = self.cur_cam.original_image.cpu().permute(1, 2, 0)
self.buffer_dynamic_blend_gt = (
buffer_dynamic_blend_gt
.contiguous()
.clamp(0, 1)
.contiguous()
.detach()
.cpu()
.numpy()
)
dpg.set_value(
"_texture", self.buffer_image
) # buffer must be contiguous, else seg fault!
dpg.set_value(
"_texture_gt", self.buffer_image_gt
) # buffer must be contiguous, else seg fault!
dpg.set_value(
"_texture_dynamic_blend", self.buffer_image_dynamic_blend
) # buffer must be contiguous, else seg fault!
dpg.set_value(
"_texture_dynamic_blend_gt", self.buffer_dynamic_blend_gt
) # buffer must be contiguous, else seg fault!
dpg.set_value(
"_texture_conf", self.buffer_conf_rendered
) # buffer must be contiguous, else seg fault!
# dpg.set_value(
# "_texture_depth_gt", self.buffer_depth_gt
# ) # buffer must be contiguous, else seg fault!
# no gui mode
def train(self, iters=5000):
if iters > 0:
for i in tqdm.trange(iters):
self.train_step()
def save_pose(path, quat_pose, train_cams, llffhold=2):
output_poses=[]
index_colmap = [cam.colmap_id for cam in train_cams]
for quat_t in quat_pose:
w2c = get_camera_from_tensor(quat_t)
output_poses.append(w2c)
colmap_poses = []
for i in range(len(index_colmap)):
ind = index_colmap.index(i+1)
bb=output_poses[ind]
bb = bb#.inverse()
colmap_poses.append(bb)
colmap_poses = torch.stack(colmap_poses).detach().cpu().numpy()
np.save(path, colmap_poses)
def convert_colmap_to_quat(colmap_poses):
quat_pose = []
for pose in colmap_poses:
rotation = Rotation.from_matrix(pose[:3, :3])
quat = rotation.as_quat()
translation = pose[:3, 3]
quat_pose.append(np.concatenate([quat, translation]))
return np.array(quat_pose)
def disable_gs_training(gaussians):
gaussians._xyz.requires_grad_(False)
gaussians._features_dc.requires_grad_(False)
gaussians._features_rest.requires_grad_(False)
gaussians._opacity.requires_grad_(False)
gaussians._scaling.requires_grad_(False)
gaussians._rotation.requires_grad_(False)
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, args, gui: GUI):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, opt=args, shuffle=False)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
train_cams_init = scene.getTrainCameras().copy()
os.makedirs(scene.model_path + 'pose', exist_ok=True)
save_pose(scene.model_path + 'pose' + "/pose_org.npy", gaussians.get_P(), train_cams_init)
save_pose(scene.model_path + 'pose' + "/pose_test.npy", gaussians.get_P(), train_cams_init)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
start = perf_counter()
if args.gui:
dpg.create_context()
gui.register_dpg()
msg = {}
for iteration in range(first_iter, opt.iterations + 1):
iter_start.record()
# disable_gs_training(gaussians)
gaussians.update_learning_rate(iteration)
if args.optim_pose==False:
gaussians.get_P().requires_grad_(False)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 3000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
pose = gaussians.get_RT(viewpoint_cam.uid)
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, camera_pose=pose)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
static = gaussians._conf_static[viewpoint_cam.uid]
image = image * static
gt_image = gt_image * static
Ll1 = l1_loss(image, gt_image, reduce=False)
Lssim = ssim(image, gt_image, size_average=False)
psnr_frame = psnr(image, gt_image).mean()
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - Lssim)
loss = (loss).mean()
msg["_loss_log"] = f'[ITER {iteration}] Training Loss: {loss.item()}'
loss.backward(retain_graph=True)
with torch.no_grad():
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if psnr_frame > args.psnr_threshold:
gaussians.optimizer_cam.step()
gaussians.optimizer_cam.zero_grad(set_to_none = True)
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{5}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
if iteration in testing_iterations:
log = training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
print(log)
msg["_pnsr_log"] = log
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
save_pose(scene.model_path + 'pose' + f"/pose_{iteration}.npy", gaussians.get_P(), train_cams_init)
# Densification
# if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
# gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
# gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
# if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
# size_threshold = 20 if iteration > opt.opacity_reset_interval else None
# gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
# if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
# gaussians.reset_opacity()
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
if args.gui and (iteration % 4 == 0 or iteration == 1):
# gui test
if iteration % args.pose_eval_interval == 0:
save_pose(scene.model_path + 'pose' + "/pose_test.npy", gaussians.get_P(), train_cams_init)
vstacks = scene.getTrainCameras()
gui.test_step(vstacks, iteration, gaussians, pipe, bg, dataset.source_path.split('/')[-1], pose_path = scene.model_path + 'pose' + "/pose_test.npy", pose_eval_interval = args.pose_eval_interval, eval_pose=args.eval_pose, msg=msg)
if gui.gui:
dpg.render_dearpygui_frame()
end = perf_counter()
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
torch.cuda.empty_cache()
validation_configs = ({'name': 'train', 'cameras' : scene.getTrainCameras()},)
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
lens = 0
for idx, viewpoint in enumerate(config['cameras']):
if config['name']=="train":
pose = scene.gaussians.get_RT(viewpoint.uid)
else:
pose = scene.gaussians.get_RT_test(viewpoint.uid)
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs, camera_pose=pose)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
if hasattr(viewpoint, 'gt_dynamic_mask'):
gt_static_mask = 1 - viewpoint.gt_dynamic_mask.to("cuda")
image = image * gt_static_mask
gt_image = gt_image * gt_static_mask
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
lens += 1
else:
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
lens += 1
if lens == 0:
log = None
continue
else:
psnr_test /= lens
l1_test /= lens
log = "\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test)
with open(os.path.join(scene.model_path, f"{config['name']}_log.txt"), 'a') as log_file:
log_file.write(f"[ITER {iteration}] Evaluating {config['name']}: L1 {l1_test} PSNR {psnr_test}\n")
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
return log
def main(s, m, iter = 2000):
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[1, 500, 800, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7_000, 30_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--get_video", action="store_true")
parser.add_argument("--optim_pose", type=bool, default = True)
parser.add_argument("--gui", action="store_true")
parser.add_argument("--eval_pose", action="store_true")
parser.add_argument('--pose_eval_interval', type=int, default=100)
parser.add_argument('--psnr_threshold', type=float, default=26)
parser.add_argument('--gt_dynamic_mask', type=str, default='/home/remote/data/sintel/training/dynamic_label_perfect')
parser.add_argument('--dataset', type=str, default='sintel')
args = parser.parse_args(sys.argv[1:])
args.source_path = s
args.model_path = m
args.iterations = iter
args.save_iterations.append(args.iterations)
os.makedirs(args.model_path, exist_ok=True)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
# safe_state(args.quiet)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
if args.gui:
w, h = Image.open(os.path.join(args.source_path, 'images', 'frame_0000.png')).size
gui = GUI(gui = args.gui, w=w, h=h)
else:
gui = None
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args, gui)
# All done
print("\nTraining complete.")
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[1, 500, 800, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7_000, 30_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--get_video", action="store_true")
parser.add_argument("--optim_pose", type=bool, default = True)
parser.add_argument("--gui", action="store_true")
parser.add_argument("--eval_pose", action="store_true")
parser.add_argument('--pose_eval_interval', type=int, default=100)
parser.add_argument('--psnr_threshold', type=float, default=26)
parser.add_argument('--gt_dynamic_mask', type=str, default='/home/remote/data/sintel/training/dynamic_label_perfect')
parser.add_argument('--dataset', type=str, default='sintel')
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
os.makedirs(args.model_path, exist_ok=True)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
# safe_state(args.quiet)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
if args.gui:
w, h = Image.open(os.path.join(args.source_path, 'images', 'frame_0000.png')).size
gui = GUI(gui = args.gui, w=w, h=h)
else:
gui = None
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args, gui)
# All done
print("\nTraining complete.")