|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import sys |
|
from scene import Scene |
|
import os |
|
from tqdm import tqdm |
|
from os import makedirs |
|
from gaussian_renderer import render_test as render |
|
import torchvision |
|
from utils_das3r.general_utils import safe_state |
|
from argparse import ArgumentParser |
|
from arguments import ModelParams, PipelineParams, get_combined_args |
|
from gaussian_renderer import GaussianModel |
|
from utils_das3r.pose_utils import get_tensor_from_camera |
|
from utils_das3r.camera_utils import generate_interpolated_path |
|
from utils_das3r.camera_utils import visualizer |
|
import cv2 |
|
import numpy as np |
|
import imageio |
|
|
|
|
|
def save_interpolate_pose(model_path, iter, n_views=0): |
|
|
|
org_pose = np.load(model_path + f"pose/pose_{iter}.npy") |
|
visualizer(org_pose, ["green" for _ in org_pose], model_path + "pose/poses_optimized.png") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_inter_pose = org_pose |
|
|
|
inter_pose_list = [] |
|
for p in all_inter_pose: |
|
tmp_view = np.eye(4) |
|
tmp_view[:3, :3] = p[:3, :3] |
|
tmp_view[:3, 3] = p[:3, 3] |
|
inter_pose_list.append(tmp_view) |
|
inter_pose = np.stack(inter_pose_list, 0) |
|
visualizer(inter_pose, ["blue" for _ in inter_pose], model_path + "pose/poses_interpolated.png") |
|
np.save(model_path + "pose/pose_interpolated.npy", inter_pose) |
|
|
|
|
|
def images_to_video(image_folder, output_video_path, fps=30): |
|
""" |
|
Convert images in a folder to a video. |
|
|
|
Args: |
|
- image_folder (str): The path to the folder containing the images. |
|
- output_video_path (str): The path where the output video will be saved. |
|
- fps (int): Frames per second for the output video. |
|
""" |
|
images = [] |
|
|
|
for filename in sorted(os.listdir(image_folder)): |
|
if filename.endswith(('.png', '.jpg', '.jpeg', '.JPG', '.PNG')): |
|
image_path = os.path.join(image_folder, filename) |
|
image = imageio.imread(image_path) |
|
images.append(image) |
|
imageio.mimwrite(output_video_path, images, fps=fps) |
|
|
|
|
|
def render_set(model_path, name, iteration, views, gaussians, pipeline, background): |
|
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders") |
|
makedirs(render_path, exist_ok=True) |
|
|
|
for idx, view in enumerate(tqdm(views, desc="Rendering progress")): |
|
camera_pose = get_tensor_from_camera(view.world_view_transform.transpose(0, 1)) |
|
rendering = render( |
|
view, gaussians, pipeline, background, camera_pose=camera_pose |
|
)["render"] |
|
gt = view.original_image[0:3, :, :] |
|
torchvision.utils.save_image( |
|
rendering, os.path.join(render_path, "{0:05d}".format(idx) + ".png") |
|
) |
|
|
|
|
|
def render_sets( |
|
dataset: ModelParams, |
|
iteration: int, |
|
pipeline: PipelineParams, |
|
skip_train: bool, |
|
skip_test: bool, |
|
args, |
|
): |
|
|
|
|
|
|
|
save_interpolate_pose(dataset.model_path, iteration) |
|
|
|
with torch.no_grad(): |
|
gaussians = GaussianModel(dataset.sh_degree) |
|
scene = Scene(dataset, gaussians, load_iteration=iteration, opt=args, shuffle=False) |
|
|
|
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0] |
|
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") |
|
|
|
|
|
render_set( |
|
dataset.model_path, |
|
"interp", |
|
scene.loaded_iter, |
|
scene.getTrainCameras(), |
|
gaussians, |
|
pipeline, |
|
background, |
|
) |
|
|
|
if args.get_video: |
|
image_folder = os.path.join(dataset.model_path, f'interp/ours_{args.iteration}/renders') |
|
output_video_file = os.path.join(dataset.model_path, f'rendered.mp4') |
|
images_to_video(image_folder, output_video_file, fps=15) |
|
|
|
def main(s, m, iter, get_video): |
|
|
|
parser = ArgumentParser(description="script parameters") |
|
lp = ModelParams(parser) |
|
pp = PipelineParams(parser) |
|
parser.add_argument("--iteration", default=-1, type=int) |
|
parser.add_argument("--skip_train", action="store_true") |
|
parser.add_argument("--skip_test", action="store_true") |
|
parser.add_argument("--quiet", action="store_true") |
|
|
|
parser.add_argument("--get_video", action="store_true") |
|
parser.add_argument("--n_views", default=None, type=int) |
|
parser.add_argument("--scene", default=None, type=str) |
|
|
|
args = parser.parse_args(sys.argv[1:]) |
|
|
|
args.source_path = s |
|
args.model_path = m |
|
args.iteration = iter |
|
args.get_video = get_video |
|
|
|
|
|
args.eval = False |
|
render_sets( |
|
lp.extract(args), |
|
args.iteration, |
|
pp.extract(args), |
|
args.skip_train, |
|
args.skip_test, |
|
args, |
|
) |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = ArgumentParser(description="Testing script parameters") |
|
model = ModelParams(parser, sentinel=True) |
|
pipeline = PipelineParams(parser) |
|
parser.add_argument("--iteration", default=-1, type=int) |
|
parser.add_argument("--skip_train", action="store_true") |
|
parser.add_argument("--skip_test", action="store_true") |
|
parser.add_argument("--quiet", action="store_true") |
|
|
|
parser.add_argument("--get_video", action="store_true") |
|
parser.add_argument("--n_views", default=None, type=int) |
|
parser.add_argument("--scene", default=None, type=str) |
|
args = get_combined_args(parser) |
|
print("Rendering " + args.model_path) |
|
|
|
|
|
|
|
args.eval = False |
|
render_sets( |
|
model.extract(args), |
|
args.iteration, |
|
pipeline.extract(args), |
|
args.skip_train, |
|
args.skip_test, |
|
args, |
|
) |
|
|