|
import os |
|
import re |
|
from copy import deepcopy |
|
from pathlib import Path |
|
|
|
import evo.main_ape as main_ape |
|
import evo.main_rpe as main_rpe |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from evo.core import sync |
|
from evo.core.metrics import PoseRelation, Unit |
|
from evo.core.trajectory import PosePath3D, PoseTrajectory3D |
|
from evo.tools import file_interface, plot |
|
from scipy.spatial.transform import Rotation |
|
import matplotlib |
|
|
|
|
|
def sintel_cam_read(filename): |
|
"""Read camera data, return (M,N) tuple. |
|
|
|
M is the intrinsic matrix, N is the extrinsic matrix, so that |
|
|
|
x = M*N*X, |
|
with x being a point in homogeneous image pixel coordinates, X being a |
|
point in homogeneous world coordinates. |
|
""" |
|
TAG_FLOAT = 202021.25 |
|
|
|
f = open(filename, "rb") |
|
check = np.fromfile(f, dtype=np.float32, count=1)[0] |
|
assert ( |
|
check == TAG_FLOAT |
|
), " cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format( |
|
TAG_FLOAT, check |
|
) |
|
M = np.fromfile(f, dtype="float64", count=9).reshape((3, 3)) |
|
N = np.fromfile(f, dtype="float64", count=12).reshape((3, 4)) |
|
return M, N |
|
|
|
|
|
def load_replica_traj(gt_file): |
|
traj_w_c = np.loadtxt(gt_file) |
|
assert traj_w_c.shape[1] == 12 or traj_w_c.shape[1] == 16 |
|
poses = [ |
|
np.array( |
|
[ |
|
[r[0], r[1], r[2], r[3]], |
|
[r[4], r[5], r[6], r[7]], |
|
[r[8], r[9], r[10], r[11]], |
|
[0, 0, 0, 1], |
|
] |
|
) |
|
for r in traj_w_c |
|
] |
|
|
|
pose_path = PosePath3D(poses_se3=poses) |
|
timestamps_mat = np.arange(traj_w_c.shape[0]).astype(float) |
|
|
|
traj = PoseTrajectory3D(poses_se3=pose_path.poses_se3, timestamps=timestamps_mat) |
|
xyz = traj.positions_xyz |
|
|
|
|
|
|
|
quat = traj.orientations_quat_wxyz |
|
|
|
traj_tum = np.column_stack((xyz, quat)) |
|
return (traj_tum, timestamps_mat) |
|
|
|
|
|
def load_sintel_traj(gt_file): |
|
|
|
gt_pose_lists = sorted(os.listdir(gt_file)) |
|
gt_pose_lists = [os.path.join(gt_file, x) for x in gt_pose_lists if x.endswith(".cam")] |
|
tstamps = [float(x.split("/")[-1][:-4].split("_")[-1]) for x in gt_pose_lists] |
|
gt_poses = [sintel_cam_read(f)[1] for f in gt_pose_lists] |
|
xyzs, wxyzs = [], [] |
|
tum_gt_poses = [] |
|
for gt_pose in gt_poses: |
|
gt_pose = np.concatenate([gt_pose, np.array([[0, 0, 0, 1]])], 0) |
|
gt_pose_inv = np.linalg.inv(gt_pose) |
|
xyz = gt_pose_inv[:3, -1] |
|
xyzs.append(xyz) |
|
R = Rotation.from_matrix(gt_pose_inv[:3, :3]) |
|
xyzw = R.as_quat() |
|
wxyz = np.array([xyzw[-1], xyzw[0], xyzw[1], xyzw[2]]) |
|
wxyzs.append(wxyz) |
|
tum_gt_pose = np.concatenate([xyz, wxyz], 0) |
|
tum_gt_poses.append(tum_gt_pose) |
|
|
|
tum_gt_poses = np.stack(tum_gt_poses, 0) |
|
tum_gt_poses[:, :3] = tum_gt_poses[:, :3] - np.mean( |
|
tum_gt_poses[:, :3], 0, keepdims=True |
|
) |
|
tt = np.expand_dims(np.stack(tstamps, 0), -1) |
|
return tum_gt_poses, tt |
|
|
|
|
|
def load_traj(gt_traj_file, traj_format="sintel", skip=0, stride=1, num_frames=None): |
|
"""Read trajectory format. Return in TUM-RGBD format. |
|
Returns: |
|
traj_tum (N, 7): camera to world poses in (x,y,z,qx,qy,qz,qw) |
|
timestamps_mat (N, 1): timestamps |
|
""" |
|
if traj_format == "replica": |
|
traj_tum, timestamps_mat = load_replica_traj(gt_traj_file) |
|
elif traj_format == "sintel": |
|
traj_tum, timestamps_mat = load_sintel_traj(gt_traj_file) |
|
elif traj_format in ["tum", "tartanair"]: |
|
traj = file_interface.read_tum_trajectory_file(gt_traj_file) |
|
xyz = traj.positions_xyz |
|
quat = traj.orientations_quat_wxyz |
|
timestamps_mat = traj.timestamps |
|
traj_tum = np.column_stack((xyz, quat)) |
|
else: |
|
raise NotImplementedError |
|
|
|
traj_tum = traj_tum[skip::stride] |
|
timestamps_mat = timestamps_mat[skip::stride] |
|
if num_frames is not None: |
|
traj_tum = traj_tum[:num_frames] |
|
timestamps_mat = timestamps_mat[:num_frames] |
|
return traj_tum, timestamps_mat |
|
|
|
|
|
def update_timestamps(gt_file, traj_format, skip=0, stride=1): |
|
"""Update timestamps given a""" |
|
if traj_format == "tum": |
|
traj_t_map_file = gt_file.replace("groundtruth.txt", "rgb.txt") |
|
timestamps = load_timestamps(traj_t_map_file, traj_format) |
|
return timestamps[skip::stride] |
|
elif traj_format == "tartanair": |
|
traj_t_map_file = gt_file.replace("gt_pose.txt", "times.txt") |
|
timestamps = load_timestamps(traj_t_map_file, traj_format) |
|
return timestamps[skip::stride] |
|
|
|
|
|
def load_timestamps(time_file, traj_format="replica"): |
|
if traj_format in ["tum", "tartanair"]: |
|
with open(time_file, "r+") as f: |
|
lines = f.readlines() |
|
timestamps_mat = [ |
|
float(x.split(" ")[0]) for x in lines if not x.startswith("#") |
|
] |
|
return timestamps_mat |
|
|
|
|
|
def make_traj(args) -> PoseTrajectory3D: |
|
if isinstance(args, tuple) or isinstance(args, list): |
|
traj, tstamps = args |
|
return PoseTrajectory3D( |
|
positions_xyz=traj[:, :3], |
|
orientations_quat_wxyz=traj[:, 3:], |
|
timestamps=tstamps, |
|
) |
|
assert isinstance(args, PoseTrajectory3D), type(args) |
|
return deepcopy(args) |
|
|
|
|
|
def eval_metrics(pred_traj, gt_traj=None, seq="", filename="", sample_stride=1): |
|
|
|
if sample_stride > 1: |
|
pred_traj[0] = pred_traj[0][::sample_stride] |
|
pred_traj[1] = pred_traj[1][::sample_stride] |
|
if gt_traj is not None: |
|
updated_gt_traj = [] |
|
updated_gt_traj.append(gt_traj[0][::sample_stride]) |
|
updated_gt_traj.append(gt_traj[1][::sample_stride]) |
|
gt_traj = updated_gt_traj |
|
|
|
pred_traj = make_traj(pred_traj) |
|
|
|
if gt_traj is not None: |
|
gt_traj = make_traj(gt_traj) |
|
|
|
if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]: |
|
pred_traj.timestamps = gt_traj.timestamps |
|
else: |
|
print(pred_traj.timestamps.shape[0], gt_traj.timestamps.shape[0]) |
|
|
|
gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj) |
|
|
|
|
|
traj_ref = gt_traj |
|
traj_est = pred_traj |
|
|
|
ate_result = main_ape.ape( |
|
traj_ref, |
|
traj_est, |
|
est_name="traj", |
|
pose_relation=PoseRelation.translation_part, |
|
align=True, |
|
correct_scale=True, |
|
) |
|
|
|
ate = ate_result.stats["rmse"] |
|
|
|
|
|
delta_list = [1] |
|
rpe_rots, rpe_transs = [], [] |
|
for delta in delta_list: |
|
rpe_rots_result = main_rpe.rpe( |
|
traj_ref, |
|
traj_est, |
|
est_name="traj", |
|
pose_relation=PoseRelation.rotation_angle_deg, |
|
align=True, |
|
correct_scale=True, |
|
delta=delta, |
|
delta_unit=Unit.frames, |
|
rel_delta_tol=0.01, |
|
all_pairs=True, |
|
) |
|
|
|
rot = rpe_rots_result.stats["rmse"] |
|
rpe_rots.append(rot) |
|
|
|
for delta in delta_list: |
|
rpe_transs_result = main_rpe.rpe( |
|
traj_ref, |
|
traj_est, |
|
est_name="traj", |
|
pose_relation=PoseRelation.translation_part, |
|
align=True, |
|
correct_scale=True, |
|
delta=delta, |
|
delta_unit=Unit.frames, |
|
rel_delta_tol=0.01, |
|
all_pairs=True, |
|
) |
|
|
|
trans = rpe_transs_result.stats["rmse"] |
|
rpe_transs.append(trans) |
|
|
|
rpe_trans, rpe_rot = np.mean(rpe_transs), np.mean(rpe_rots) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return ate_result, ate, rpe_trans, rpe_rot |
|
|
|
|
|
def best_plotmode(traj): |
|
_, i1, i2 = np.argsort(np.var(traj.positions_xyz, axis=0)) |
|
plot_axes = "xyz"[i2] + "xyz"[i1] |
|
|
|
return getattr(plot.PlotMode, 'xyz') |
|
|
|
|
|
def plot_trajectory( |
|
pred_traj, gt_traj=None, title="", filename="", align=True, correct_scale=True |
|
): |
|
pred_traj = make_traj(pred_traj) |
|
|
|
if gt_traj is not None: |
|
gt_traj = make_traj(gt_traj) |
|
if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]: |
|
pred_traj.timestamps = gt_traj.timestamps |
|
else: |
|
print("WARNING", pred_traj.timestamps.shape[0], gt_traj.timestamps.shape[0]) |
|
|
|
gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj) |
|
|
|
if align: |
|
pred_traj.align(gt_traj, correct_scale=correct_scale) |
|
|
|
plot_collection = plot.PlotCollection("PlotCol") |
|
matplotlib.use('Agg') |
|
|
|
fig = plt.figure(figsize=(5.5, 3)) |
|
plot_mode = best_plotmode(gt_traj if (gt_traj is not None) else pred_traj) |
|
ax = plot.prepare_axis(fig, plot_mode) |
|
plt.rcParams['lines.markersize'] = 1.25 |
|
ax.set_title(title) |
|
if gt_traj is not None: |
|
plot.traj(ax, plot_mode, gt_traj, ".", "gray", "Ground Truth") |
|
plot.traj(ax, plot_mode, pred_traj, ".", "blue", "Predicted") |
|
plot_collection.add_figure("traj_error", fig) |
|
|
|
fig.canvas.draw() |
|
image = np.frombuffer(fig.canvas.tostring_argb(), dtype='uint8').astype(np.float32) / 255.0 |
|
image = image.reshape(fig.canvas.get_width_height()[::-1] + (4,))[:,:,1:] |
|
plt.close(fig=fig) |
|
return np.ascontiguousarray(image) |
|
|
|
|
|
|
|
def save_trajectory_tum_format(traj, filename): |
|
traj = make_traj(traj) |
|
tostr = lambda a: " ".join(map(str, a)) |
|
with Path(filename).open("w") as f: |
|
for i in range(traj.num_poses): |
|
f.write( |
|
f"{traj.timestamps[i]} {tostr(traj.positions_xyz[i])} {tostr(traj.orientations_quat_wxyz[i][[0,1,2,3]])}\n" |
|
) |
|
print(f"Saved trajectory to {filename}") |
|
|
|
|
|
def extract_metrics(file_path): |
|
with open(file_path, 'r') as file: |
|
content = file.read() |
|
|
|
|
|
ate_match = re.search(r'APE w.r.t. translation part \(m\).*?rmse\s+([0-9.]+)', content, re.DOTALL) |
|
rpe_trans_match = re.search(r'RPE w.r.t. translation part \(m\).*?rmse\s+([0-9.]+)', content, re.DOTALL) |
|
rpe_rot_match = re.search(r'RPE w.r.t. rotation angle in degrees \(deg\).*?rmse\s+([0-9.]+)', content, re.DOTALL) |
|
|
|
ate = float(ate_match.group(1)) if ate_match else 0.0 |
|
rpe_trans = float(rpe_trans_match.group(1)) if rpe_trans_match else 0.0 |
|
rpe_rot = float(rpe_rot_match.group(1)) if rpe_rot_match else 0.0 |
|
|
|
return ate, rpe_trans, rpe_rot |
|
|
|
def process_directory(directory): |
|
results = [] |
|
for root, _, files in os.walk(directory): |
|
if files is not None: |
|
files = sorted(files) |
|
for file in files: |
|
if file.endswith('_metric.txt'): |
|
file_path = os.path.join(root, file) |
|
seq_name = file.replace('_eval_metric.txt', '') |
|
ate, rpe_trans, rpe_rot = extract_metrics(file_path) |
|
results.append((seq_name, ate, rpe_trans, rpe_rot)) |
|
|
|
return results |
|
|
|
def calculate_averages(results): |
|
total_ate = sum(r[1] for r in results) |
|
total_rpe_trans = sum(r[2] for r in results) |
|
total_rpe_rot = sum(r[3] for r in results) |
|
count = len(results) |
|
|
|
if count == 0: |
|
return 0.0, 0.0, 0.0 |
|
|
|
avg_ate = total_ate / count |
|
avg_rpe_trans = total_rpe_trans / count |
|
avg_rpe_rot = total_rpe_rot / count |
|
|
|
return avg_ate, avg_rpe_trans, avg_rpe_rot |
|
|