|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from random import randint |
|
from utils.loss_utils import l1_loss, ssim |
|
from gaussian_renderer import render, network_gui, render_confidence |
|
import sys |
|
from scene import Scene, GaussianModel |
|
from utils.general_utils import safe_state |
|
import uuid |
|
from tqdm import tqdm |
|
from utils.image_utils import psnr |
|
from argparse import ArgumentParser, Namespace |
|
from arguments import ModelParams, PipelineParams, OptimizationParams |
|
from utils.pose_utils import get_camera_from_tensor |
|
from utils.vo_eval import load_traj, eval_metrics, plot_trajectory |
|
from utils.gui_utils import orbit_camera, OrbitCamera |
|
import dearpygui.dearpygui as dpg |
|
from scipy.spatial.transform import Rotation |
|
|
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
TENSORBOARD_FOUND = True |
|
except ImportError: |
|
TENSORBOARD_FOUND = False |
|
|
|
from time import perf_counter, time |
|
|
|
def c2w_to_tumpose(c2w): |
|
""" |
|
Convert a camera-to-world matrix to a tuple of translation and rotation |
|
|
|
input: c2w: 4x4 matrix |
|
output: tuple of translation and rotation (x y z qw qx qy qz) |
|
""" |
|
|
|
c2w = c2w |
|
c2w = np.linalg.inv(c2w) |
|
xyz = c2w[:3, -1] |
|
rot = Rotation.from_matrix(c2w[:3, :3]) |
|
qx, qy, qz, qw = rot.as_quat() |
|
tum_pose = np.concatenate([xyz, [qw, qx, qy, qz]]) |
|
return tum_pose |
|
|
|
class GUI: |
|
def __init__(self, gui, w, h) -> None: |
|
self.gui = gui |
|
|
|
self.visualization_mode = 'RGB' |
|
self.W, self.H = w*2, h*2 |
|
self.cam = OrbitCamera(self.W, self.H, r=5, fovy=50) |
|
|
|
self.mode = "render" |
|
self.seed = "random" |
|
self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32) |
|
self.buffer_image_gt = np.ones((self.W//2, self.H//2, 3), dtype=np.float32) |
|
self.buffer_image_dynamic_blend = np.ones((self.W//2, self.H//2, 3), dtype=np.float32) |
|
self.buffer_depth_model = np.ones((self.W//2, self.H//2, 3), dtype=np.float32) |
|
self.buffer_dynamic_blend_gt = np.ones((self.W//2, self.H//2, 3), dtype=np.float32) |
|
self.buffer_depth_gt = np.ones((self.W//2, self.H//2, 3), dtype=np.float32) |
|
self.buffer_conf_rendered = np.ones((self.W//2, self.H//2, 3), dtype=np.float32) |
|
self.buffer_image_traj = np.ones((550, 300, 3), dtype=np.float32) |
|
|
|
self.training = False |
|
|
|
|
|
def __del__(self): |
|
if self.gui: |
|
dpg.destroy_context() |
|
|
|
def register_dpg(self): |
|
|
|
with dpg.texture_registry(show=False): |
|
dpg.add_raw_texture( |
|
self.W, |
|
self.H, |
|
self.buffer_image, |
|
format=dpg.mvFormat_Float_rgb, |
|
tag="_texture", |
|
) |
|
dpg.add_raw_texture( |
|
self.W//2, |
|
self.H//2, |
|
self.buffer_image_gt, |
|
format=dpg.mvFormat_Float_rgb, |
|
tag="_texture_gt", |
|
) |
|
dpg.add_raw_texture( |
|
self.W//2, |
|
self.H//2, |
|
self.buffer_image_gt, |
|
format=dpg.mvFormat_Float_rgb, |
|
tag="_texture_dynamic_blend", |
|
) |
|
|
|
dpg.add_raw_texture( |
|
self.W//2, |
|
self.H//2, |
|
self.buffer_depth_model, |
|
format=dpg.mvFormat_Float_rgb, |
|
tag="_texture_depth_model", |
|
) |
|
dpg.add_raw_texture( |
|
550, |
|
300, |
|
self.buffer_depth_model, |
|
format=dpg.mvFormat_Float_rgb, |
|
tag="_texture_traj", |
|
) |
|
|
|
dpg.add_raw_texture( |
|
self.W//2, |
|
self.H//2, |
|
self.buffer_conf_rendered, |
|
format=dpg.mvFormat_Float_rgb, |
|
tag="_texture_conf", |
|
) |
|
dpg.add_raw_texture( |
|
self.W//2, |
|
self.H//2, |
|
self.buffer_dynamic_blend_gt, |
|
format=dpg.mvFormat_Float_rgb, |
|
tag="_texture_dynamic_blend_gt", |
|
) |
|
|
|
|
|
|
|
|
|
with dpg.window( |
|
tag="_primary_window", |
|
width=self.W, |
|
height=self.H, |
|
pos=[0, 0], |
|
no_move=True, |
|
no_title_bar=True, |
|
no_scrollbar=True, |
|
): |
|
|
|
dpg.add_image("_texture") |
|
|
|
|
|
|
|
|
|
with dpg.window( |
|
tag="_rendered_conf_window", |
|
label="GS Staticness", |
|
width=self.W//2, |
|
height=self.H//2, |
|
pos=[0, self.H], |
|
no_move=True, |
|
no_scrollbar=True, |
|
): |
|
dpg.add_image("_texture_conf") |
|
|
|
with dpg.window( |
|
tag="_dynamic_blend_window_gt", |
|
label="GT Dynamic Mask", |
|
width=self.W//2, |
|
height=self.H//2, |
|
pos=[self.W//2, self.H], |
|
no_move=True, |
|
no_scrollbar=True, |
|
): |
|
dpg.add_image("_texture_dynamic_blend_gt") |
|
|
|
|
|
with dpg.window( |
|
tag="_ground_truth_window", |
|
label="Ground Truth RGB", |
|
width=self.W//2, |
|
height=self.H//2, |
|
pos=[0, self.H + self.H//2], |
|
no_move=True, |
|
no_scrollbar=True, |
|
): |
|
dpg.add_image("_texture_gt") |
|
|
|
|
|
with dpg.window( |
|
tag="_dynamic_blend_window", |
|
label="Model Pred Dynamic Mask", |
|
width=self.W//2, |
|
height=self.H//2, |
|
pos=[self.W//2, self.H + self.H//2], |
|
no_move=True, |
|
no_scrollbar=True, |
|
): |
|
dpg.add_image("_texture_dynamic_blend") |
|
|
|
|
|
|
|
with dpg.window( |
|
tag="_pose_eval_window", |
|
label="Pose Evaluation", |
|
width=600, |
|
height=self.H, |
|
pos=[self.W, self.H], |
|
no_move=True, |
|
no_scrollbar=True, |
|
): |
|
dpg.add_text("", tag="_pose_log_input") |
|
dpg.add_image("_texture_traj") |
|
|
|
|
|
|
|
with dpg.window( |
|
tag="_info_window", |
|
label="Info", |
|
width=600, |
|
height=self.H, |
|
pos=[self.W, 0], |
|
no_move=True, |
|
no_scrollbar=True, |
|
): |
|
dpg.add_text("Loss: ", tag="_loss_log") |
|
dpg.add_text("Training PSNR: ", tag="_pnsr_log") |
|
|
|
|
|
|
|
|
|
|
|
def callback_camera_drag_rotate_or_draw_mask(sender, app_data): |
|
if not dpg.is_item_focused("_primary_window"): |
|
return |
|
|
|
dx = app_data[1] |
|
dy = app_data[2] |
|
|
|
self.cam.orbit(dx, dy) |
|
self.need_update = True |
|
|
|
def callback_camera_wheel_scale(sender, app_data): |
|
if not dpg.is_item_focused("_primary_window"): |
|
return |
|
|
|
delta = app_data |
|
|
|
self.cam.scale(delta) |
|
self.need_update = True |
|
|
|
def callback_camera_drag_pan(sender, app_data): |
|
if not dpg.is_item_focused("_primary_window"): |
|
return |
|
|
|
dx = app_data[1] |
|
dy = app_data[2] |
|
|
|
self.cam.pan(dx, dy) |
|
self.need_update = True |
|
|
|
with dpg.handler_registry(): |
|
|
|
dpg.add_mouse_drag_handler( |
|
button=dpg.mvMouseButton_Left, |
|
callback=callback_camera_drag_rotate_or_draw_mask, |
|
) |
|
dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale) |
|
dpg.add_mouse_drag_handler( |
|
button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan |
|
) |
|
|
|
dpg.create_viewport( |
|
title="Gaussian", |
|
width=self.W + 600, |
|
height=self.H + self.H + (45 if os.name == "nt" else 0), |
|
resizable=False, |
|
) |
|
|
|
|
|
with dpg.theme() as theme_no_padding: |
|
with dpg.theme_component(dpg.mvAll): |
|
|
|
dpg.add_theme_style( |
|
dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core |
|
) |
|
dpg.add_theme_style( |
|
dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core |
|
) |
|
dpg.add_theme_style( |
|
dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core |
|
) |
|
|
|
dpg.bind_item_theme("_primary_window", theme_no_padding) |
|
|
|
dpg.setup_dearpygui() |
|
|
|
|
|
|
|
if os.path.exists("LXGWWenKai-Regular.ttf"): |
|
with dpg.font_registry(): |
|
with dpg.font("LXGWWenKai-Regular.ttf", 18) as default_font: |
|
dpg.bind_font(default_font) |
|
|
|
dpg.show_viewport() |
|
|
|
|
|
@torch.no_grad() |
|
def test_step(self, vstacks, iteration, gaussians, pipe, bg, seq, pose_path, pose_eval_interval=50, eval_pose=True, msg=None): |
|
|
|
for k, v in msg.items(): |
|
dpg.set_value(k, str(v)) |
|
|
|
if eval_pose and (iteration % pose_eval_interval ==0 or iteration == 1): |
|
poses = np.load(pose_path) |
|
|
|
tt = np.arange(len(poses)).astype(float) |
|
tum_poses = [c2w_to_tumpose(p) for p in poses] |
|
tum_poses = np.stack(tum_poses, 0) |
|
pred_traj = [tum_poses, tt] |
|
|
|
gt_traj_file = f'/home/remote/data/sintel/training/camdata_left/{seq}' |
|
gt_traj = load_traj(gt_traj_file=gt_traj_file) |
|
|
|
|
|
_, ate, rpe_trans, rpe_rot = eval_metrics( |
|
pred_traj, gt_traj |
|
) |
|
|
|
pose_eval = f'iter: {iteration} | ATE: {ate:.5f}, RPE trans: {rpe_trans:.5f}, RPE rot: {rpe_rot:.5f}' |
|
print(pose_eval) |
|
|
|
if self.gui: |
|
traj = plot_trajectory( |
|
pred_traj, gt_traj, title=seq |
|
) |
|
dpg.set_value("_pose_log_input", pose_eval) |
|
|
|
self.buffer_image_traj = traj |
|
dpg.set_value( |
|
"_texture_traj", self.buffer_image_traj |
|
) |
|
|
|
|
|
|
|
if self.gui: |
|
fps = 4 |
|
viewpoint_cam = vstacks[int(time()*fps)%len(vstacks)] |
|
pose = gaussians.get_RT(viewpoint_cam.uid) |
|
self.cur_cam = viewpoint_cam |
|
|
|
|
|
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, camera_pose=pose) |
|
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"] |
|
|
|
buffer_image = image |
|
|
|
|
|
buffer_image = torch.nn.functional.interpolate( |
|
buffer_image.unsqueeze(0), |
|
size=(self.H, self.W), |
|
mode="bilinear", |
|
align_corners=False, |
|
).squeeze(0) |
|
|
|
|
|
psnr = gaussians._conf_static[self.cur_cam.uid].unsqueeze(0).repeat(3, 1, 1) |
|
|
|
buffer_conf_rendered = torch.nn.functional.interpolate( |
|
psnr.unsqueeze(0), |
|
size=(self.H//2, self.W//2), |
|
mode="bilinear", |
|
align_corners=False, |
|
).squeeze(0) |
|
|
|
self.buffer_conf_rendered = ( |
|
buffer_conf_rendered.permute(1, 2, 0) |
|
.contiguous() |
|
.clamp(0, 1) |
|
.contiguous() |
|
.detach() |
|
.cpu() |
|
.numpy() |
|
) |
|
|
|
self.buffer_image = ( |
|
buffer_image.permute(1, 2, 0) |
|
.contiguous() |
|
.clamp(0, 1) |
|
.contiguous() |
|
.detach() |
|
.cpu() |
|
.numpy() |
|
) |
|
gt_image = self.cur_cam.original_image |
|
self.buffer_image_gt = ( |
|
gt_image.permute(1, 2, 0) |
|
.contiguous() |
|
.clamp(0, 1) |
|
.contiguous() |
|
.detach() |
|
.cpu() |
|
.numpy() |
|
) |
|
|
|
|
|
|
|
alpha = 0.5 |
|
dynamic_mask = self.cur_cam.dyna_avg_map |
|
buffer_image_dynamic_blend = (alpha * self.cur_cam.original_image.cpu().permute(1, 2, 0) + (1 - alpha) * dynamic_mask[:, :, None].cpu()) |
|
self.buffer_image_dynamic_blend = ( |
|
buffer_image_dynamic_blend |
|
.contiguous() |
|
.clamp(0, 1) |
|
.contiguous() |
|
.detach() |
|
.cpu() |
|
.numpy() |
|
) |
|
|
|
alpha = 0.5 |
|
if hasattr(self.cur_cam, 'gt_dynamic_mask'): |
|
dynamic_mask = self.cur_cam.gt_dynamic_mask |
|
buffer_dynamic_blend_gt = (alpha * self.cur_cam.original_image.cpu().permute(1, 2, 0) + (1 - alpha) * dynamic_mask.cpu().permute(1, 2, 0)) |
|
else: |
|
buffer_dynamic_blend_gt = self.cur_cam.original_image.cpu().permute(1, 2, 0) |
|
|
|
self.buffer_dynamic_blend_gt = ( |
|
buffer_dynamic_blend_gt |
|
.contiguous() |
|
.clamp(0, 1) |
|
.contiguous() |
|
.detach() |
|
.cpu() |
|
.numpy() |
|
) |
|
|
|
dpg.set_value( |
|
"_texture", self.buffer_image |
|
) |
|
dpg.set_value( |
|
"_texture_gt", self.buffer_image_gt |
|
) |
|
dpg.set_value( |
|
"_texture_dynamic_blend", self.buffer_image_dynamic_blend |
|
) |
|
|
|
dpg.set_value( |
|
"_texture_dynamic_blend_gt", self.buffer_dynamic_blend_gt |
|
) |
|
dpg.set_value( |
|
"_texture_conf", self.buffer_conf_rendered |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train(self, iters=5000): |
|
if iters > 0: |
|
for i in tqdm.trange(iters): |
|
self.train_step() |
|
|
|
def save_pose(path, quat_pose, train_cams, llffhold=2): |
|
output_poses=[] |
|
index_colmap = [cam.colmap_id for cam in train_cams] |
|
for quat_t in quat_pose: |
|
w2c = get_camera_from_tensor(quat_t) |
|
output_poses.append(w2c) |
|
colmap_poses = [] |
|
for i in range(len(index_colmap)): |
|
ind = index_colmap.index(i+1) |
|
bb=output_poses[ind] |
|
bb = bb |
|
colmap_poses.append(bb) |
|
colmap_poses = torch.stack(colmap_poses).detach().cpu().numpy() |
|
np.save(path, colmap_poses) |
|
|
|
def convert_colmap_to_quat(colmap_poses): |
|
quat_pose = [] |
|
for pose in colmap_poses: |
|
rotation = Rotation.from_matrix(pose[:3, :3]) |
|
quat = rotation.as_quat() |
|
translation = pose[:3, 3] |
|
quat_pose.append(np.concatenate([quat, translation])) |
|
return np.array(quat_pose) |
|
|
|
def disable_gs_training(gaussians): |
|
gaussians._xyz.requires_grad_(False) |
|
gaussians._features_dc.requires_grad_(False) |
|
gaussians._features_rest.requires_grad_(False) |
|
gaussians._opacity.requires_grad_(False) |
|
gaussians._scaling.requires_grad_(False) |
|
gaussians._rotation.requires_grad_(False) |
|
|
|
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, args, gui: GUI): |
|
first_iter = 0 |
|
tb_writer = prepare_output_and_logger(dataset) |
|
gaussians = GaussianModel(dataset.sh_degree) |
|
scene = Scene(dataset, gaussians, opt=args, shuffle=False) |
|
gaussians.training_setup(opt) |
|
if checkpoint: |
|
(model_params, first_iter) = torch.load(checkpoint) |
|
gaussians.restore(model_params, opt) |
|
train_cams_init = scene.getTrainCameras().copy() |
|
os.makedirs(scene.model_path + 'pose', exist_ok=True) |
|
save_pose(scene.model_path + 'pose' + "/pose_org.npy", gaussians.get_P(), train_cams_init) |
|
save_pose(scene.model_path + 'pose' + "/pose_test.npy", gaussians.get_P(), train_cams_init) |
|
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0] |
|
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") |
|
|
|
iter_start = torch.cuda.Event(enable_timing = True) |
|
iter_end = torch.cuda.Event(enable_timing = True) |
|
|
|
viewpoint_stack = None |
|
ema_loss_for_log = 0.0 |
|
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress") |
|
first_iter += 1 |
|
|
|
start = perf_counter() |
|
if args.gui: |
|
dpg.create_context() |
|
gui.register_dpg() |
|
|
|
msg = {} |
|
|
|
for iteration in range(first_iter, opt.iterations + 1): |
|
|
|
iter_start.record() |
|
|
|
|
|
|
|
gaussians.update_learning_rate(iteration) |
|
|
|
if args.optim_pose==False: |
|
gaussians.get_P().requires_grad_(False) |
|
|
|
|
|
if iteration % 3000 == 0: |
|
gaussians.oneupSHdegree() |
|
|
|
|
|
if not viewpoint_stack: |
|
viewpoint_stack = scene.getTrainCameras().copy() |
|
|
|
|
|
if (iteration - 1) == debug_from: |
|
pipe.debug = True |
|
bg = torch.rand((3), device="cuda") if opt.random_background else background |
|
|
|
|
|
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1)) |
|
pose = gaussians.get_RT(viewpoint_cam.uid) |
|
|
|
|
|
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, camera_pose=pose) |
|
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"] |
|
|
|
|
|
|
|
gt_image = viewpoint_cam.original_image.cuda() |
|
static = gaussians._conf_static[viewpoint_cam.uid] |
|
|
|
image = image * static |
|
gt_image = gt_image * static |
|
Ll1 = l1_loss(image, gt_image, reduce=False) |
|
Lssim = ssim(image, gt_image, size_average=False) |
|
|
|
psnr_frame = psnr(image, gt_image).mean() |
|
|
|
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - Lssim) |
|
loss = (loss).mean() |
|
|
|
msg["_loss_log"] = f'[ITER {iteration}] Training Loss: {loss.item()}' |
|
|
|
loss.backward(retain_graph=True) |
|
|
|
with torch.no_grad(): |
|
gaussians.optimizer.step() |
|
gaussians.optimizer.zero_grad(set_to_none = True) |
|
if psnr_frame > args.psnr_threshold: |
|
gaussians.optimizer_cam.step() |
|
gaussians.optimizer_cam.zero_grad(set_to_none = True) |
|
|
|
|
|
iter_end.record() |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log |
|
if iteration % 10 == 0: |
|
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{5}f}"}) |
|
progress_bar.update(10) |
|
if iteration == opt.iterations: |
|
progress_bar.close() |
|
|
|
|
|
if iteration in testing_iterations: |
|
log = training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background)) |
|
print(log) |
|
msg["_pnsr_log"] = log |
|
|
|
if (iteration in saving_iterations): |
|
print("\n[ITER {}] Saving Gaussians".format(iteration)) |
|
scene.save(iteration) |
|
save_pose(scene.model_path + 'pose' + f"/pose_{iteration}.npy", gaussians.get_P(), train_cams_init) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (iteration in checkpoint_iterations): |
|
print("\n[ITER {}] Saving Checkpoint".format(iteration)) |
|
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth") |
|
|
|
|
|
if args.gui and (iteration % 4 == 0 or iteration == 1): |
|
|
|
if iteration % args.pose_eval_interval == 0: |
|
save_pose(scene.model_path + 'pose' + "/pose_test.npy", gaussians.get_P(), train_cams_init) |
|
|
|
vstacks = scene.getTrainCameras() |
|
gui.test_step(vstacks, iteration, gaussians, pipe, bg, dataset.source_path.split('/')[-1], pose_path = scene.model_path + 'pose' + "/pose_test.npy", pose_eval_interval = args.pose_eval_interval, eval_pose=args.eval_pose, msg=msg) |
|
if gui.gui: |
|
dpg.render_dearpygui_frame() |
|
|
|
end = perf_counter() |
|
|
|
|
|
def prepare_output_and_logger(args): |
|
if not args.model_path: |
|
if os.getenv('OAR_JOB_ID'): |
|
unique_str=os.getenv('OAR_JOB_ID') |
|
else: |
|
unique_str = str(uuid.uuid4()) |
|
args.model_path = os.path.join("./output/", unique_str[0:10]) |
|
|
|
|
|
print("Output folder: {}".format(args.model_path)) |
|
os.makedirs(args.model_path, exist_ok = True) |
|
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f: |
|
cfg_log_f.write(str(Namespace(**vars(args)))) |
|
|
|
|
|
tb_writer = None |
|
if TENSORBOARD_FOUND: |
|
tb_writer = SummaryWriter(args.model_path) |
|
else: |
|
print("Tensorboard not available: not logging progress") |
|
return tb_writer |
|
|
|
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs): |
|
|
|
torch.cuda.empty_cache() |
|
validation_configs = ({'name': 'train', 'cameras' : scene.getTrainCameras()},) |
|
|
|
for config in validation_configs: |
|
if config['cameras'] and len(config['cameras']) > 0: |
|
l1_test = 0.0 |
|
psnr_test = 0.0 |
|
lens = 0 |
|
for idx, viewpoint in enumerate(config['cameras']): |
|
if config['name']=="train": |
|
pose = scene.gaussians.get_RT(viewpoint.uid) |
|
else: |
|
pose = scene.gaussians.get_RT_test(viewpoint.uid) |
|
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs, camera_pose=pose)["render"], 0.0, 1.0) |
|
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0) |
|
if tb_writer and (idx < 5): |
|
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration) |
|
if iteration == testing_iterations[0]: |
|
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration) |
|
|
|
if hasattr(viewpoint, 'gt_dynamic_mask'): |
|
gt_static_mask = 1 - viewpoint.gt_dynamic_mask.to("cuda") |
|
image = image * gt_static_mask |
|
gt_image = gt_image * gt_static_mask |
|
l1_test += l1_loss(image, gt_image).mean().double() |
|
psnr_test += psnr(image, gt_image).mean().double() |
|
lens += 1 |
|
else: |
|
l1_test += l1_loss(image, gt_image).mean().double() |
|
psnr_test += psnr(image, gt_image).mean().double() |
|
lens += 1 |
|
if lens == 0: |
|
log = None |
|
continue |
|
else: |
|
psnr_test /= lens |
|
l1_test /= lens |
|
log = "\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test) |
|
with open(os.path.join(scene.model_path, f"{config['name']}_log.txt"), 'a') as log_file: |
|
log_file.write(f"[ITER {iteration}] Evaluating {config['name']}: L1 {l1_test} PSNR {psnr_test}\n") |
|
if tb_writer: |
|
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration) |
|
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration) |
|
|
|
return log |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = ArgumentParser(description="Training script parameters") |
|
lp = ModelParams(parser) |
|
op = OptimizationParams(parser) |
|
pp = PipelineParams(parser) |
|
parser.add_argument('--ip', type=str, default="127.0.0.1") |
|
parser.add_argument('--port', type=int, default=6009) |
|
parser.add_argument('--debug_from', type=int, default=-1) |
|
parser.add_argument('--detect_anomaly', action='store_true', default=False) |
|
parser.add_argument("--test_iterations", nargs="+", type=int, default=[1, 500, 800, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7_000, 30_000]) |
|
parser.add_argument("--save_iterations", nargs="+", type=int, default=[]) |
|
parser.add_argument("--quiet", action="store_true") |
|
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[]) |
|
parser.add_argument("--start_checkpoint", type=str, default = None) |
|
parser.add_argument("--get_video", action="store_true") |
|
parser.add_argument("--optim_pose", type=bool, default = True) |
|
parser.add_argument("--gui", action="store_true") |
|
parser.add_argument("--eval_pose", action="store_true") |
|
parser.add_argument('--pose_eval_interval', type=int, default=100) |
|
parser.add_argument('--psnr_threshold', type=float, default=26) |
|
parser.add_argument('--gt_dynamic_mask', type=str, default='/home/remote/data/sintel/training/dynamic_label_perfect') |
|
parser.add_argument('--dataset', type=str, default='sintel') |
|
|
|
|
|
args = parser.parse_args(sys.argv[1:]) |
|
args.save_iterations.append(args.iterations) |
|
|
|
os.makedirs(args.model_path, exist_ok=True) |
|
|
|
print("Optimizing " + args.model_path) |
|
|
|
|
|
|
|
|
|
torch.autograd.set_detect_anomaly(args.detect_anomaly) |
|
|
|
if args.gui: |
|
w, h = Image.open(os.path.join(args.source_path, 'images', 'frame_0000.png')).size |
|
gui = GUI(gui = args.gui, w=w, h=h) |
|
else: |
|
gui = None |
|
|
|
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args, gui) |
|
|
|
|
|
print("\nTraining complete.") |
|
|