|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import collections |
|
import struct |
|
|
|
CameraModel = collections.namedtuple( |
|
"CameraModel", ["model_id", "model_name", "num_params"]) |
|
Camera = collections.namedtuple( |
|
"Camera", ["id", "model", "width", "height", "params"]) |
|
BaseImage = collections.namedtuple( |
|
"Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"]) |
|
Point3D = collections.namedtuple( |
|
"Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"]) |
|
CAMERA_MODELS = { |
|
CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3), |
|
CameraModel(model_id=1, model_name="PINHOLE", num_params=4), |
|
CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4), |
|
CameraModel(model_id=3, model_name="RADIAL", num_params=5), |
|
CameraModel(model_id=4, model_name="OPENCV", num_params=8), |
|
CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8), |
|
CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12), |
|
CameraModel(model_id=7, model_name="FOV", num_params=5), |
|
CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4), |
|
CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5), |
|
CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12) |
|
} |
|
CAMERA_MODEL_IDS = dict([(camera_model.model_id, camera_model) |
|
for camera_model in CAMERA_MODELS]) |
|
CAMERA_MODEL_NAMES = dict([(camera_model.model_name, camera_model) |
|
for camera_model in CAMERA_MODELS]) |
|
|
|
|
|
def qvec2rotmat(qvec): |
|
return np.array([ |
|
[1 - 2 * qvec[2]**2 - 2 * qvec[3]**2, |
|
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3], |
|
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]], |
|
[2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3], |
|
1 - 2 * qvec[1]**2 - 2 * qvec[3]**2, |
|
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]], |
|
[2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2], |
|
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1], |
|
1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]]) |
|
|
|
def rotmat2qvec(R): |
|
Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat |
|
K = np.array([ |
|
[Rxx - Ryy - Rzz, 0, 0, 0], |
|
[Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0], |
|
[Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0], |
|
[Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz]]) / 3.0 |
|
eigvals, eigvecs = np.linalg.eigh(K) |
|
qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)] |
|
if qvec[0] < 0: |
|
qvec *= -1 |
|
return qvec |
|
|
|
class Image(BaseImage): |
|
def qvec2rotmat(self): |
|
return qvec2rotmat(self.qvec) |
|
|
|
def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"): |
|
"""Read and unpack the next bytes from a binary file. |
|
:param fid: |
|
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc. |
|
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}. |
|
:param endian_character: Any of {@, =, <, >, !} |
|
:return: Tuple of read and unpacked values. |
|
""" |
|
data = fid.read(num_bytes) |
|
return struct.unpack(endian_character + format_char_sequence, data) |
|
|
|
def read_points3D_text(path): |
|
""" |
|
see: src/base/reconstruction.cc |
|
void Reconstruction::ReadPoints3DText(const std::string& path) |
|
void Reconstruction::WritePoints3DText(const std::string& path) |
|
""" |
|
xyzs = None |
|
rgbs = None |
|
errors = None |
|
num_points = 0 |
|
with open(path, "r") as fid: |
|
while True: |
|
line = fid.readline() |
|
if not line: |
|
break |
|
line = line.strip() |
|
if len(line) > 0 and line[0] != "#": |
|
num_points += 1 |
|
|
|
|
|
xyzs = np.empty((num_points, 3)) |
|
rgbs = np.empty((num_points, 3)) |
|
errors = np.empty((num_points, 1)) |
|
count = 0 |
|
with open(path, "r") as fid: |
|
while True: |
|
line = fid.readline() |
|
if not line: |
|
break |
|
line = line.strip() |
|
if len(line) > 0 and line[0] != "#": |
|
elems = line.split() |
|
xyz = np.array(tuple(map(float, elems[1:4]))) |
|
rgb = np.array(tuple(map(int, elems[4:7]))) |
|
error = np.array(float(elems[7])) |
|
xyzs[count] = xyz |
|
rgbs[count] = rgb |
|
errors[count] = error |
|
count += 1 |
|
|
|
return xyzs, rgbs, errors |
|
|
|
def read_points3D_binary(path_to_model_file): |
|
""" |
|
see: src/base/reconstruction.cc |
|
void Reconstruction::ReadPoints3DBinary(const std::string& path) |
|
void Reconstruction::WritePoints3DBinary(const std::string& path) |
|
""" |
|
|
|
|
|
with open(path_to_model_file, "rb") as fid: |
|
num_points = read_next_bytes(fid, 8, "Q")[0] |
|
|
|
xyzs = np.empty((num_points, 3)) |
|
rgbs = np.empty((num_points, 3)) |
|
errors = np.empty((num_points, 1)) |
|
|
|
for p_id in range(num_points): |
|
binary_point_line_properties = read_next_bytes( |
|
fid, num_bytes=43, format_char_sequence="QdddBBBd") |
|
xyz = np.array(binary_point_line_properties[1:4]) |
|
rgb = np.array(binary_point_line_properties[4:7]) |
|
error = np.array(binary_point_line_properties[7]) |
|
track_length = read_next_bytes( |
|
fid, num_bytes=8, format_char_sequence="Q")[0] |
|
track_elems = read_next_bytes( |
|
fid, num_bytes=8*track_length, |
|
format_char_sequence="ii"*track_length) |
|
xyzs[p_id] = xyz |
|
rgbs[p_id] = rgb |
|
errors[p_id] = error |
|
return xyzs, rgbs, errors |
|
|
|
def read_intrinsics_text(path): |
|
""" |
|
Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py |
|
""" |
|
cameras = {} |
|
with open(path, "r") as fid: |
|
while True: |
|
line = fid.readline() |
|
if not line: |
|
break |
|
line = line.strip() |
|
if len(line) > 0 and line[0] != "#": |
|
elems = line.split() |
|
camera_id = int(elems[0]) |
|
model = elems[1] |
|
assert model == "PINHOLE", "While the loader support other types, the rest of the code assumes PINHOLE" |
|
width = int(elems[2]) |
|
height = int(elems[3]) |
|
params = np.array(tuple(map(float, elems[4:]))) |
|
cameras[camera_id] = Camera(id=camera_id, model=model, |
|
width=width, height=height, |
|
params=params) |
|
return cameras |
|
|
|
def read_extrinsics_binary(path_to_model_file): |
|
""" |
|
see: src/base/reconstruction.cc |
|
void Reconstruction::ReadImagesBinary(const std::string& path) |
|
void Reconstruction::WriteImagesBinary(const std::string& path) |
|
""" |
|
images = {} |
|
with open(path_to_model_file, "rb") as fid: |
|
num_reg_images = read_next_bytes(fid, 8, "Q")[0] |
|
for _ in range(num_reg_images): |
|
binary_image_properties = read_next_bytes( |
|
fid, num_bytes=64, format_char_sequence="idddddddi") |
|
image_id = binary_image_properties[0] |
|
qvec = np.array(binary_image_properties[1:5]) |
|
tvec = np.array(binary_image_properties[5:8]) |
|
camera_id = binary_image_properties[8] |
|
image_name = "" |
|
current_char = read_next_bytes(fid, 1, "c")[0] |
|
while current_char != b"\x00": |
|
image_name += current_char.decode("utf-8") |
|
current_char = read_next_bytes(fid, 1, "c")[0] |
|
num_points2D = read_next_bytes(fid, num_bytes=8, |
|
format_char_sequence="Q")[0] |
|
x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D, |
|
format_char_sequence="ddq"*num_points2D) |
|
xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])), |
|
tuple(map(float, x_y_id_s[1::3]))]) |
|
point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3]))) |
|
images[image_id] = Image( |
|
id=image_id, qvec=qvec, tvec=tvec, |
|
camera_id=camera_id, name=image_name, |
|
xys=xys, point3D_ids=point3D_ids) |
|
return images |
|
|
|
|
|
def read_intrinsics_binary(path_to_model_file): |
|
""" |
|
see: src/base/reconstruction.cc |
|
void Reconstruction::WriteCamerasBinary(const std::string& path) |
|
void Reconstruction::ReadCamerasBinary(const std::string& path) |
|
""" |
|
cameras = {} |
|
with open(path_to_model_file, "rb") as fid: |
|
num_cameras = read_next_bytes(fid, 8, "Q")[0] |
|
for _ in range(num_cameras): |
|
camera_properties = read_next_bytes( |
|
fid, num_bytes=24, format_char_sequence="iiQQ") |
|
camera_id = camera_properties[0] |
|
model_id = camera_properties[1] |
|
model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name |
|
width = camera_properties[2] |
|
height = camera_properties[3] |
|
num_params = CAMERA_MODEL_IDS[model_id].num_params |
|
params = read_next_bytes(fid, num_bytes=8*num_params, |
|
format_char_sequence="d"*num_params) |
|
cameras[camera_id] = Camera(id=camera_id, |
|
model=model_name, |
|
width=width, |
|
height=height, |
|
params=np.array(params)) |
|
assert len(cameras) == num_cameras |
|
return cameras |
|
|
|
|
|
def read_extrinsics_text(path): |
|
""" |
|
Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py |
|
""" |
|
images = {} |
|
poses = [] |
|
with open(path, "r") as fid: |
|
while True: |
|
line = fid.readline() |
|
if not line: |
|
break |
|
line = line.strip() |
|
if len(line) > 0 and line[0] != "#": |
|
elems = line.split() |
|
image_id = int(elems[0]) |
|
qvec = np.array(tuple(map(float, elems[1:5]))) |
|
tvec = np.array(tuple(map(float, elems[5:8]))) |
|
camera_id = int(elems[8]) |
|
image_name = elems[9] |
|
elems = fid.readline().split() |
|
xys = np.column_stack([tuple(map(float, elems[0::3])), |
|
tuple(map(float, elems[1::3]))]) |
|
point3D_ids = np.array(tuple(map(int, elems[2::3]))) |
|
images[image_id] = Image( |
|
id=image_id, qvec=qvec, tvec=tvec, |
|
camera_id=camera_id, name=image_name, |
|
xys=xys, point3D_ids=point3D_ids) |
|
poses.append(elems[1:8]) |
|
return images |
|
|
|
|
|
def read_colmap_bin_array(path): |
|
""" |
|
Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_dense.py |
|
|
|
:param path: path to the colmap binary file. |
|
:return: nd array with the floating point values in the value |
|
""" |
|
with open(path, "rb") as fid: |
|
width, height, channels = np.genfromtxt(fid, delimiter="&", max_rows=1, |
|
usecols=(0, 1, 2), dtype=int) |
|
fid.seek(0) |
|
num_delimiter = 0 |
|
byte = fid.read(1) |
|
while True: |
|
if byte == b"&": |
|
num_delimiter += 1 |
|
if num_delimiter >= 3: |
|
break |
|
byte = fid.read(1) |
|
array = np.fromfile(fid, np.float32) |
|
array = array.reshape((width, height, channels), order="F") |
|
return np.transpose(array, (1, 0, 2)).squeeze() |
|
|