File size: 30,872 Bytes
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact  [email protected]
#

import torch
# from lietorch import SO3, SE3, Sim3, LieGroupParameter
import numpy as np
from utils.general_utils import inverse_sigmoid, get_expon_lr_func, build_rotation
from torch import nn
import os
from utils.system_utils import mkdir_p
from plyfile import PlyData, PlyElement
from utils.sh_utils import RGB2SH
from simple_knn._C import distCUDA2
from utils.graphics_utils import BasicPointCloud
from utils.general_utils import strip_symmetric, build_scaling_rotation
from scipy.spatial.transform import Rotation as R
from utils.pose_utils import rotation2quad, get_tensor_from_camera
from utils.graphics_utils import getWorld2View2
from utils.pose_utils import rotation2quad, get_tensor_from_camera, depth_to_pts3d

class GaussianModel:

    def setup_functions(self):
        def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
            L = build_scaling_rotation(scaling_modifier * scaling, rotation)
            actual_covariance = L @ L.transpose(1, 2)
            symm = strip_symmetric(actual_covariance)
            return symm

        self.scaling_activation = torch.exp
        self.scaling_inverse_activation = torch.log

        self.covariance_activation = build_covariance_from_scaling_rotation

        self.opacity_activation = torch.sigmoid
        self.inverse_opacity_activation = inverse_sigmoid

        self.rotation_activation = torch.nn.functional.normalize
        self.enable_test = True

    def __init__(self, sh_degree : int):
        self.active_sh_degree = 0
        self.max_sh_degree = sh_degree
        self._xyz = torch.empty(0)
        self._features_dc = torch.empty(0)
        self._features_rest = torch.empty(0)
        self._scaling = torch.empty(0)
        self._rotation = torch.empty(0)
        self._opacity = torch.empty(0)
        self.max_radii2D = torch.empty(0)
        self.xyz_gradient_accum = torch.empty(0)
        self.denom = torch.empty(0)
        self.optimizer = None
        self.percent_dense = 0
        self.spatial_lr_scale = 0
        self.setup_functions()

    def capture(self):
        return (
            self.active_sh_degree,
            self._xyz,
            self._features_dc,
            self._features_rest,
            self._scaling,
            self._rotation,
            self._opacity,
            self.max_radii2D,
            self.xyz_gradient_accum,
            self.denom,
            self.optimizer.state_dict(),
            self.spatial_lr_scale,
            self.Q,
            self.T,
        )

    def restore(self, model_args, training_args):
        (self.active_sh_degree,
        self._xyz,
        self._features_dc,
        self._features_rest,
        self._scaling,
        self._rotation,
        self._opacity,
        self.max_radii2D,
        xyz_gradient_accum,
        denom,
        opt_dict,
        self.spatial_lr_scale,
        self.Q, self.T) = model_args
        self.training_setup(training_args)
        self.xyz_gradient_accum = xyz_gradient_accum
        self.denom = denom
        self.optimizer.load_state_dict(opt_dict)

    @property
    def get_scaling(self):
        return self.scaling_activation(self._scaling)

    @property
    def get_rotation(self):
        return self.rotation_activation(self._rotation)

    @property
    def get_xyz(self):
        return self._xyz

    def compute_relative_world_to_camera(self, R1, t1, R2, t2):
        # Create a row of zeros with a one at the end, for homogeneous coordinates
        zero_row = np.array([[0, 0, 0, 1]], dtype=np.float32)

        # Compute the inverse of the first extrinsic matrix
        E1_inv = np.hstack([R1.T, -R1.T @ t1.reshape(-1, 1)])  # Transpose and reshape for correct dimensions
        E1_inv = np.vstack([E1_inv, zero_row])  # Append the zero_row to make it a 4x4 matrix

        # Compute the second extrinsic matrix
        E2 = np.hstack([R2, -R2 @ t2.reshape(-1, 1)])  # No need to transpose R2
        E2 = np.vstack([E2, zero_row])  # Append the zero_row to make it a 4x4 matrix

        # Compute the relative transformation
        E_rel = E2 @ E1_inv

        return E_rel

    def init_test_RT_seq(self, cam_list):
        if len(cam_list[1.0]) == 0:
            self.enable_test = False
            return 
        quats =[]
        trans = []
        for cam in cam_list[1.0]:
            pose = get_tensor_from_camera(cam.world_view_transform.transpose(0, 1)) # R T -> quat t
            quat = pose[:4]
            tran = pose[4:]
            quats.append(quat)
            trans.append(tran)
        quats = torch.stack(quats)
        trans = torch.stack(trans)
        self.test_Q = quats.cuda().requires_grad_(True)
        self.test_T = trans.cuda().requires_grad_(True)

    def init_RT_seq(self, cam_list):
        quats =[]
        trans = []
        for cam in cam_list[1.0]:
            pose = get_tensor_from_camera(cam.world_view_transform.transpose(0, 1)) # R T -> quat t
            quat = pose[:4]
            tran = pose[4:]
            quats.append(quat)
            trans.append(tran)
        quats = torch.stack(quats)
        trans = torch.stack(trans)
        self.Q = quats.cuda().requires_grad_(True)
        self.T = trans.cuda().requires_grad_(True)

    def init_fov(self, cam_list):
        cam = cam_list[1.0][0]
        self.FoVx = torch.tensor(cam.FoVx).cuda().requires_grad_(True)
        self.FoVy = torch.tensor(cam.FoVy).cuda().requires_grad_(True)



    def get_RT(self, idx):
        quat = self.Q[idx]
        tran = self.T[idx]
        pose = torch.cat((quat, tran), dim=0)
        return pose

    def get_P(self):
        pose = torch.cat((self.Q, self.T), dim=1)
        return pose
    
    def get_RT_test(self, idx):
        quat = self.test_Q[idx]
        tran = self.test_T[idx]
        pose = torch.cat((quat, tran), dim=0)
        return pose

    @property
    def get_features(self):
        features_dc = self._features_dc
        features_rest = self._features_rest
        return torch.cat((features_dc, features_rest), dim=1)

    @property
    def get_opacity(self):
        return self.opacity_activation(self._opacity)

    def get_covariance(self, scaling_modifier = 1):
        return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation)

    def oneupSHdegree(self):
        if self.active_sh_degree < self.max_sh_degree:
            self.active_sh_degree += 1

    def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float):
        self.spatial_lr_scale = spatial_lr_scale
        fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda()
        fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda())
        features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
        features[:, :3, 0 ] = fused_color
        features[:, 3:, 1:] = 0.0

        print("Number of points at initialisation : ", fused_point_cloud.shape[0])

        dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001)
        scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3)
        rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda")
        rots[:, 0] = 1

        opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda"))

        self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True))
        self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True))
        self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True))
        self._scaling = nn.Parameter(scales.requires_grad_(True))
        self._rotation = nn.Parameter(rots.requires_grad_(True))
        self._opacity = nn.Parameter(opacities.requires_grad_(True))
        self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")

    def training_setup(self, training_args):
        self.percent_dense = training_args.percent_dense
        self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")

        conf_lr_init = 3e-3
        conf_lr_final = 3e-4

        l = [
            {'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"},
            {'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"},
            {'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"},
            {'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"},
            {'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"},
            {'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"},
            {'params': [self._conf_static], 'lr': conf_lr_init, "name": "conf_static"},
        ]

        cam_lr_init_Q = 0.00003
        cam_lr_final_Q = 0.000003
        cam_lr_init_T = 0.00003
        cam_lr_final_T = 0.000003
        l_cam = [
                {'params': [self.Q],'lr': cam_lr_init_Q, "name": "pose_Q"},
                {'params': [self.T],'lr': cam_lr_init_T, "name": "pose_T"},
                {'params': [self.FoVx],'lr': 0.0001, "name": "fovX"},
                {'params': [self.FoVy],'lr': 0.0001, "name": "fovY"}
        ]
        # l_cam = [{'params': [self.P],'lr': training_args.rotation_lr, "name": "pose"},]


        self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15)

        self.optimizer_cam = torch.optim.Adam(l_cam, lr=0.0, eps=1e-15)

        if self.enable_test:
            l_cam_test = [
                    {'params': [self.test_Q],'lr': cam_lr_init_Q, "name": "test_pose_Q"},
                    {'params': [self.test_T],'lr': cam_lr_init_T, "name": "test_pose_T"},
            ]
            self.optimizer_cam_test = torch.optim.Adam(l_cam_test, lr=0.0, eps=1e-15)


        self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale,
                                                    lr_final=training_args.position_lr_final*self.spatial_lr_scale,
                                                    lr_delay_mult=training_args.position_lr_delay_mult,
                                                    max_steps=training_args.position_lr_max_steps)
        self.Q_scheduler_args = get_expon_lr_func(
                                                    # lr_init=0,
                                                    # lr_final=0,
                                                    lr_init=cam_lr_init_Q,
                                                    lr_final=cam_lr_final_Q,
                                                    # lr_init=training_args.position_lr_init*self.spatial_lr_scale*10,
                                                    # lr_final=training_args.position_lr_final*self.spatial_lr_scale*10,
                                                    lr_delay_mult=training_args.position_lr_delay_mult,
                                                    max_steps=1000)
        
        self.T_scheduler_args = get_expon_lr_func(
                                                    # lr_init=0,
                                                    # lr_final=0,
                                                    lr_init=cam_lr_init_T,
                                                    lr_final=cam_lr_final_T,
                                                    # lr_init=training_args.position_lr_init*self.spatial_lr_scale*10,
                                                    # lr_final=training_args.position_lr_final*self.spatial_lr_scale*10,
                                                    lr_delay_mult=training_args.position_lr_delay_mult,
                                                    max_steps=1000)
        
        self.conf_static_scheduler_args = get_expon_lr_func(
                                                    lr_init=conf_lr_init,
                                                    lr_final=conf_lr_final,
                                                    lr_delay_mult=training_args.position_lr_delay_mult,
                                                    max_steps=training_args.iterations)

    def update_learning_rate(self, iteration):
        ''' Learning rate scheduling per step '''
        for param_group in self.optimizer_cam.param_groups:
            if param_group["name"] == "pose_Q":
                lr = self.Q_scheduler_args(iteration)
                param_group['lr'] = lr
            if param_group["name"] == "pose_T":
                lr = self.T_scheduler_args(iteration)
                param_group['lr'] = lr
            if param_group["name"] == "test_pose_Q":
                lr = self.Q_scheduler_args(iteration)
                param_group['lr'] = lr
            if param_group["name"] == "test_pose_T":
                lr = self.T_scheduler_args(iteration)
                param_group['lr'] = lr

        for param_group in self.optimizer.param_groups:
            if param_group["name"] == "xyz":
                lr = self.xyz_scheduler_args(iteration)
                param_group['lr'] = lr
            if param_group["name"] == "conf_static" or param_group["name"] == "conf":
                lr = self.conf_static_scheduler_args(iteration)
                param_group['lr'] = lr
        # return lr

    def construct_list_of_attributes(self):
        l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
        # All channels except the 3 DC
        for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]):
            l.append('f_dc_{}'.format(i))
        for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]):
            l.append('f_rest_{}'.format(i))
        l.append('opacity_ori')
        l.append('opacity')
        l.append('conf_static')
        for i in range(self._scaling.shape[1]):
            l.append('scale_{}'.format(i))
        for i in range(self._rotation.shape[1]):
            l.append('rot_{}'.format(i))
        return l

    def save_ply(self, path):
        mkdir_p(os.path.dirname(path))

        xyz = self._xyz.detach().cpu().numpy()
        normals = np.zeros_like(xyz)
        f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
        f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()

        opacities = self.opacity_activation(self._opacity) * self._conf_static.reshape(-1, 1)[self.aggregated_mask]
        opacities = self.inverse_opacity_activation(opacities).detach().cpu().numpy()

        opacities_ori = self._opacity.detach().cpu().numpy()

        scale = self._scaling.detach().cpu().numpy()
        rotation = self._rotation.detach().cpu().numpy()
        conf_static = self._conf_static.reshape(-1, 1)[self.aggregated_mask].detach().cpu().numpy()

        dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
        elements = np.empty(xyz.shape[0], dtype=dtype_full)
        attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities_ori, opacities, conf_static, scale, rotation), axis=1)
        elements[:] = list(map(tuple, attributes))
        el = PlyElement.describe(elements, 'vertex')
        PlyData([el]).write(path)

    def reset_opacity(self):
        opacities_new = inverse_sigmoid(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01))
        optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity")
        self._opacity = optimizable_tensors["opacity"]

    def load_ply(self, path):
        plydata = PlyData.read(path)

        xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
                        np.asarray(plydata.elements[0]["y"]),
                        np.asarray(plydata.elements[0]["z"])),  axis=1)
        opacities_ori = np.asarray(plydata.elements[0]["opacity_ori"])[..., np.newaxis]
        opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]

        opacities = opacities_ori # for dynamic-aware rendering
        conf_static = np.asarray(plydata.elements[0]["conf_static"])[..., np.newaxis]


        features_dc = np.zeros((xyz.shape[0], 3, 1))
        features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
        features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
        features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])

        extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")]
        extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1]))
        assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3
        features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
        for idx, attr_name in enumerate(extra_f_names):
            features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
        # Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
        features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1))

        scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
        scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1]))
        scales = np.zeros((xyz.shape[0], len(scale_names)))
        for idx, attr_name in enumerate(scale_names):
            scales[:, idx] = np.asarray(plydata.elements[0][attr_name])

        rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")]
        rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1]))
        rots = np.zeros((xyz.shape[0], len(rot_names)))
        for idx, attr_name in enumerate(rot_names):
            rots[:, idx] = np.asarray(plydata.elements[0][attr_name])

        self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True))
        self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
        self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
        self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True))
        self._conf_static = nn.Parameter(torch.tensor(conf_static, dtype=torch.float, device="cuda").requires_grad_(True))
        self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True))
        self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True))

        self.active_sh_degree = self.max_sh_degree

    def replace_tensor_to_optimizer(self, tensor, name):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            if group["name"] == name:
                # breakpoint()
                stored_state = self.optimizer.state.get(group['params'][0], None)
                stored_state["exp_avg"] = torch.zeros_like(tensor)
                stored_state["exp_avg_sq"] = torch.zeros_like(tensor)

                del self.optimizer.state[group['params'][0]]
                group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
                self.optimizer.state[group['params'][0]] = stored_state

                optimizable_tensors[group["name"]] = group["params"][0]
        return optimizable_tensors

    def _prune_optimizer(self, mask):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            stored_state = self.optimizer.state.get(group['params'][0], None)
            if stored_state is not None:
                stored_state["exp_avg"] = stored_state["exp_avg"][mask]
                stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask]

                del self.optimizer.state[group['params'][0]]
                group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True)))
                self.optimizer.state[group['params'][0]] = stored_state

                optimizable_tensors[group["name"]] = group["params"][0]
            else:
                group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True))
                optimizable_tensors[group["name"]] = group["params"][0]
        return optimizable_tensors

    def prune_points(self, mask):
        valid_points_mask = ~mask
        optimizable_tensors = self._prune_optimizer(valid_points_mask)

        self._xyz = optimizable_tensors["xyz"]
        self._features_dc = optimizable_tensors["f_dc"]
        self._features_rest = optimizable_tensors["f_rest"]
        self._opacity = optimizable_tensors["opacity"]
        self._scaling = optimizable_tensors["scaling"]
        self._rotation = optimizable_tensors["rotation"]

        self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask]

        self.denom = self.denom[valid_points_mask]
        self.max_radii2D = self.max_radii2D[valid_points_mask]

    def cat_tensors_to_optimizer(self, tensors_dict):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            assert len(group["params"]) == 1
            extension_tensor = tensors_dict[group["name"]]
            stored_state = self.optimizer.state.get(group['params'][0], None)
            if stored_state is not None:

                stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0)
                stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0)

                del self.optimizer.state[group['params'][0]]
                group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
                self.optimizer.state[group['params'][0]] = stored_state

                optimizable_tensors[group["name"]] = group["params"][0]
            else:
                group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
                optimizable_tensors[group["name"]] = group["params"][0]

        return optimizable_tensors

    def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation):
        d = {"xyz": new_xyz,
        "f_dc": new_features_dc,
        "f_rest": new_features_rest,
        "opacity": new_opacities,
        "scaling" : new_scaling,
        "rotation" : new_rotation}

        optimizable_tensors = self.cat_tensors_to_optimizer(d)
        self._xyz = optimizable_tensors["xyz"]
        self._features_dc = optimizable_tensors["f_dc"]
        self._features_rest = optimizable_tensors["f_rest"]
        self._opacity = optimizable_tensors["opacity"]
        self._scaling = optimizable_tensors["scaling"]
        self._rotation = optimizable_tensors["rotation"]

        self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")

    def densify_and_split(self, grads, grad_threshold, scene_extent, N=2):
        n_init_points = self.get_xyz.shape[0]
        # Extract points that satisfy the gradient condition
        padded_grad = torch.zeros((n_init_points), device="cuda")
        padded_grad[:grads.shape[0]] = grads.squeeze()
        selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False)
        selected_pts_mask = torch.logical_and(selected_pts_mask,
                                              torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent)

        stds = self.get_scaling[selected_pts_mask].repeat(N,1)
        means =torch.zeros((stds.size(0), 3),device="cuda")
        samples = torch.normal(mean=means, std=stds)
        rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1)
        new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1)
        new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N))
        new_rotation = self._rotation[selected_pts_mask].repeat(N,1)
        new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1)
        new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1)
        new_opacity = self._opacity[selected_pts_mask].repeat(N,1)

        self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation)

        prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool)))
        self.prune_points(prune_filter)

    def densify_and_clone(self, grads, grad_threshold, scene_extent):
        # Extract points that satisfy the gradient condition
        selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False)
        selected_pts_mask = torch.logical_and(selected_pts_mask,
                                              torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent)

        new_xyz = self._xyz[selected_pts_mask]
        new_features_dc = self._features_dc[selected_pts_mask]
        new_features_rest = self._features_rest[selected_pts_mask]
        new_opacities = self._opacity[selected_pts_mask]
        new_scaling = self._scaling[selected_pts_mask]
        new_rotation = self._rotation[selected_pts_mask]

        self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation)

    def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size):
        grads = self.xyz_gradient_accum / self.denom
        grads[grads.isnan()] = 0.0

        # self.densify_and_clone(grads, max_grad, extent)
        # self.densify_and_split(grads, max_grad, extent)

        prune_mask = (self.get_opacity < min_opacity).squeeze()
        if max_screen_size:
            big_points_vs = self.max_radii2D > max_screen_size
            big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent
            prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
        self.prune_points(prune_mask)

        torch.cuda.empty_cache()

    def add_densification_stats(self, viewspace_point_tensor, update_filter):
        self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True)
        self.denom[update_filter] += 1
    

    def create_from_cameras(self, train_cameras, spatial_lr_scale : float, conf_thre = 1.0):
        self.spatial_lr_scale = spatial_lr_scale
        poses = []
        confidences = []
        dynamic_masks = []
        dyna_avg = []
        rgbs = []
        depth_maps = []
        K = []
        camera0 = train_cameras[1.0][0]
        W = camera0.image_width
        H = camera0.image_height

        for camera in train_cameras[1.0]:
            camera.uid
            intr = camera.intr
            focal_length_x = intr.params[0]
            focal_length_y = intr.params[1]
            height = intr.height
            width = intr.width   
            intr = torch.tensor([[focal_length_x, 0, width / 2],
                              [0, focal_length_y, height / 2],
                              [0, 0, 1]], device="cuda")
            K.append(intr)
            poses.append(camera.original_pose)
            depth_maps.append(camera.depth_map)
            confidences.append(camera.conf_map)
            dynamic_masks.append(camera.dynamic_mask)
            dyna_avg.append(camera.dyna_avg_map)
            rgbs.append(camera.original_image)

        K = torch.stack(K)
        rgbs = torch.stack(rgbs)
        depth_maps = torch.stack(depth_maps)
        confidences = torch.stack(confidences)
        dynamic_masks = torch.stack(dynamic_masks)
        dyna_avg = torch.stack(dyna_avg)
        poses = torch.stack(poses).cuda()




        p3d = depth_to_pts3d(K, poses, W, H, depth_maps).float()
        p3d_color = rgbs.permute(0,2,3,1).reshape(-1, 3)
        pts_4_3dgs = p3d.reshape(-1, 3)
        
        dyna = dyna_avg
        conf_static = 1 - torch.tensor(dyna)
        # confidences = conf_static * confidences
        confidence = torch.tensor(confidences).reshape(-1)

        confidence_masks = confidence > torch.tensor(conf_thre).log()
        print(f"Ratio of confidence masks: {confidence_masks.float().mean().item():.4f}")
        self.aggregated_mask = confidence_masks
        print(f"Ratio of aggreagted masks: {self.aggregated_mask.float().mean().item():.4f}")
        print(f"Number of points before: {pts_4_3dgs.shape[0]}")
        pts_4_3dgs = pts_4_3dgs[self.aggregated_mask]
        color_4_3dgs = p3d_color.reshape(-1, 3)[self.aggregated_mask]


        fused_point_cloud = pts_4_3dgs
        fused_color = RGB2SH(color_4_3dgs)
        features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
        features[:, :3, 0 ] = fused_color
        features[:, 3:, 1:] = 0.0

        print("Number of points at initialisation : ", fused_point_cloud.shape[0])

        dist2 = torch.clamp_min(distCUDA2(pts_4_3dgs), 0.0000001)
        scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3)
        rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda")
        rots[:, 0] = 1

        opa = 1/len(train_cameras[1.0])
        opacities = inverse_sigmoid(opa * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda"))
        # opacities = inverse_sigmoid(conf_static_4_3dgs.reshape(-1, 1))


        self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True))
        self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(False))
        self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(False))
        self._scaling = nn.Parameter(scales.requires_grad_(False))
        self._rotation = nn.Parameter(rots.requires_grad_(False))
        self._opacity = nn.Parameter(opacities.requires_grad_(False))
        self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")

        self._conf_static = nn.Parameter(conf_static.requires_grad_(True))