File size: 18,406 Bytes
4f6b78d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import sys
from PIL import Image
from typing import NamedTuple
from scene.colmap_loader import read_extrinsics_text, read_intrinsics_text, qvec2rotmat, \
read_extrinsics_binary, read_intrinsics_binary, read_points3D_binary, read_points3D_text
from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal, to_open3d_point_cloud
import numpy as np
import json
from pathlib import Path
from plyfile import PlyData, PlyElement
from utils.sh_utils import SH2RGB
from scene.gaussian_model import BasicPointCloud
from utils.vo_eval import file_interface
import torch
from utils.pose_utils import quad2rotation
class CameraInfo(NamedTuple):
uid: int
intr: object
R: np.array
T: np.array
FovY: np.array
FovX: np.array
image: np.array
image_path: str
image_name: str
width: int
height: int
dynamic_mask: np.array
enlarged_dynamic_mask: np.array
conf_map: np.array
depth_map: np.array
dyna_avg_map: np.array
dyna_max_map: np.array
original_pose: np.array
gt_dynamic_mask: np.array
class SceneInfo(NamedTuple):
point_cloud: BasicPointCloud
train_cameras: list
test_cameras: list
nerf_normalization: dict
ply_path: str
train_poses: list
test_poses: list
def getNerfppNorm(cam_info):
def get_center_and_diag(cam_centers):
cam_centers = np.hstack(cam_centers)
avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True)
center = avg_cam_center
dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True)
diagonal = np.max(dist)
return center.flatten(), diagonal
cam_centers = []
for cam in cam_info:
W2C = getWorld2View2(cam.R, cam.T)
C2W = np.linalg.inv(W2C)
cam_centers.append(C2W[:3, 3:4])
center, diagonal = get_center_and_diag(cam_centers)
radius = diagonal * 1.1
translate = -center
return {"translate": translate, "radius": radius}
def tumpose_to_c2w(tum_pose):
"""
Convert a TUM pose (translation and quaternion) back to a camera-to-world matrix (4x4) in CUDA mode.
input: tum_pose - 7-element array: [x, y, z, qw, qx, qy, qz]
output: c2w - 4x4 camera-to-world matrix
"""
# Extract translation and quaternion from the TUM pose
xyz = tum_pose[:3]
# the order should be qx qy qz qw
qw, qx, qy, qz = tum_pose[3:]
quat = torch.tensor([qx, qy, qz, qw])
# Convert quaternion to rotation matrix using PyTorch3D
R = quad2rotation(quat.unsqueeze(0)).squeeze(0).numpy() # 3x3 rotation matrix
# Create the 4x4 camera-to-world matrix
c2w = np.eye(4)
c2w[:3, :3] = R # Rotation part
c2w[:3, 3] = xyz # Translation part
return c2w
def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder, eval, opt):
cam_infos = []
poses = []
original_poses=[]
extrinsics_path = os.path.join(os.path.dirname(images_folder), "pred_traj.txt")
traj = file_interface.read_tum_trajectory_file(extrinsics_path)
xyz = traj.positions_xyz
quat = traj.orientations_quat_wxyz
timestamps_mat = traj.timestamps
traj_tum = np.column_stack((xyz, quat))
for i in range(traj_tum.shape[0]):
pose = tumpose_to_c2w(traj_tum[i])
original_poses.append(pose)
for idx, key in enumerate(cam_extrinsics):
sys.stdout.write('\r')
# the exact output you're looking for:
sys.stdout.write("Reading camera {}/{}".format(idx+1, len(cam_extrinsics)))
sys.stdout.flush()
extr = cam_extrinsics[key]
intr = cam_intrinsics[extr.camera_id]
uid = intr.id
height = intr.height
width = intr.width
R = np.transpose(qvec2rotmat(extr.qvec))
T = np.array(extr.tvec)
pose = np.vstack((np.hstack((R, T.reshape(3,-1))),np.array([[0, 0, 0, 1]])))
poses.append(pose)
if intr.model=="SIMPLE_PINHOLE":
focal_length_x = intr.params[0]
FovY = focal2fov(focal_length_x, height)
FovX = focal2fov(focal_length_x, width)
elif intr.model=="PINHOLE":
focal_length_x = intr.params[0]
focal_length_y = intr.params[1]
FovY = focal2fov(focal_length_y, height)
FovX = focal2fov(focal_length_x, width)
else:
assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!"
image_path = os.path.join(images_folder, os.path.basename(extr.name))
image_name = os.path.basename(image_path).split(".")[0]
image = Image.open(image_path)
seq_name = image_path.split("/")[-3]
idx_str = image_path.split("/")[-1].split(".")[0].split("_")[-1]
seq_path = '/'.join(image_path.split("/")[:-2])
intrinsics_path = os.path.join(seq_path, "pred_intrinsics.txt")
conf_path = os.path.join(seq_path, "confidence_maps", f"conf_{idx_str}.npy")
depth_path = os.path.join(seq_path, "depth_maps", f"frame_{idx_str}.npy")
dyna_avg_path = os.path.join(seq_path, "dyna_avg", f"dyna_avg_{idx_str}.npy")
dyna_max_path = os.path.join(seq_path, "dyna_max", f"dyna_max_{idx_str}.npy")
dynamic_mask_path = os.path.join(seq_path, "dynamic_masks", f"dynamic_mask_{idx_str}.png")
enlarged_dynamic_mask_path = os.path.join(seq_path, "enlarged_dynamic_masks", f"enlarged_dynamic_mask_{idx_str}.png")
if opt.dataset == 'sintel':
gt_dynamic_mask_path = os.path.join(opt.gt_dynamic_mask, seq_name, f"frame_{int(idx_str)+1:04d}.png")
elif opt.dataset == 'davis':
gt_dynamic_mask_path = os.path.join(opt.gt_dynamic_mask, seq_name, f"{int(idx_str):05d}.png")
try:
conf_map = np.load(conf_path)
except:
conf_map = None
try:
K_flattened = np.loadtxt(intrinsics_path, dtype=np.float32)
K = K_flattened.reshape(-1, 3, 3)
K = K[int(idx_str)]
except:
K = None
try:
depth_map = np.load(depth_path)
except:
depth_map = None
try:
dyna_avg_map = np.load(dyna_avg_path)
except:
dyna_avg_map = None
try:
dyna_max_map = np.load(dyna_max_path)
except:
dyna_max_map = None
try:
dynamic_mask = np.array(Image.open(dynamic_mask_path)) / 255.0 > 0.5
except:
dynamic_mask = None
try:
enlarged_dynamic_mask = np.array(Image.open(enlarged_dynamic_mask_path)) / 255.0 > 0.5
except:
enlarged_dynamic_mask = None
try:
if opt.dataset == 'davis':
gt_dynamic_mask = np.array(Image.open(gt_dynamic_mask_path)) > 0.5
else:
gt_dynamic_mask = np.array(Image.open(gt_dynamic_mask_path)) / 255.0 > 0.5
except:
gt_dynamic_mask = None
# original_pose = None
original_pose = original_poses[int(idx_str)]
cam_info = CameraInfo(uid=uid, intr = intr, R=R, T=T, original_pose = original_pose, FovY=FovY, FovX=FovX, image=image, conf_map=conf_map, depth_map=depth_map,
image_path=image_path, image_name=image_name, width=width, height=height, dynamic_mask = dynamic_mask, enlarged_dynamic_mask = enlarged_dynamic_mask, dyna_avg_map=dyna_avg_map, dyna_max_map=dyna_max_map, gt_dynamic_mask=gt_dynamic_mask)
cam_infos.append(cam_info)
sys.stdout.write('\n')
return cam_infos, poses
# For interpolated video, open when only render interpolated video
def readColmapCamerasInterp(cam_extrinsics, cam_intrinsics, images_folder, model_path):
pose_interpolated_path = model_path + 'pose/pose_interpolated.npy'
pose_interpolated = np.load(pose_interpolated_path)
intr = cam_intrinsics[1]
cam_infos = []
poses=[]
for idx, pose_npy in enumerate(pose_interpolated):
sys.stdout.write('\r')
sys.stdout.write("Reading camera {}/{}".format(idx+1, pose_interpolated.shape[0]))
sys.stdout.flush()
extr = pose_npy
intr = intr
height = intr.height
width = intr.width
uid = idx
R = extr[:3, :3].transpose()
T = extr[:3, 3]
pose = np.vstack((np.hstack((R, T.reshape(3,-1))),np.array([[0, 0, 0, 1]])))
# print(uid)
# print(pose.shape)
# pose = np.linalg.inv(pose)
poses.append(pose)
if intr.model=="SIMPLE_PINHOLE":
focal_length_x = intr.params[0]
FovY = focal2fov(focal_length_x, height)
FovX = focal2fov(focal_length_x, width)
elif intr.model=="PINHOLE":
focal_length_x = intr.params[0]
focal_length_y = intr.params[1]
FovY = focal2fov(focal_length_y, height)
FovX = focal2fov(focal_length_x, width)
else:
assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!"
images_list = os.listdir(os.path.join(images_folder))
image_name_0 = images_list[0]
image_name = str(idx).zfill(4)
image = Image.open(images_folder + '/' + image_name_0)
cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, image=image,
image_path=images_folder, image_name=image_name, width=width, height=height,
dynamic_mask = None, enlarged_dynamic_mask = None,
intr=None, conf_map=None, depth_map=None, dyna_avg_map=None, dyna_max_map=None, gt_dynamic_mask=None, original_pose=None)
cam_infos.append(cam_info)
sys.stdout.write('\n')
return cam_infos, poses
def fetchPly(path):
plydata = PlyData.read(path)
vertices = plydata['vertex']
positions = np.vstack([vertices['x'], vertices['y'], vertices['z']]).T
colors = np.vstack([vertices['red'], vertices['green'], vertices['blue']]).T / 255.0
normals = np.vstack([vertices['nx'], vertices['ny'], vertices['nz']]).T
return BasicPointCloud(points=positions, colors=colors, normals=normals)
def storePly(path, xyz, rgb):
# Define the dtype for the structured array
dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'),
('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]
normals = np.zeros_like(xyz)
elements = np.empty(xyz.shape[0], dtype=dtype)
attributes = np.concatenate((xyz, normals, rgb), axis=1)
elements[:] = list(map(tuple, attributes))
# Create the PlyData object and write to file
vertex_element = PlyElement.describe(elements, 'vertex')
ply_data = PlyData([vertex_element])
ply_data.write(path)
def readColmapSceneInfo(path, images, eval, args, opt, llffhold=2):
# try:
# cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin")
# cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin")
# cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file)
# cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file)
# except:
##### For initializing test pose using PCD_Registration
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt")
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt")
cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file)
cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file)
reading_dir = "images" if images == None else images
if opt.get_video:
cam_infos_unsorted, poses = readColmapCamerasInterp(cam_extrinsics=cam_extrinsics, cam_intrinsics=cam_intrinsics, images_folder=os.path.join(path, reading_dir), model_path=args.model_path)
else:
cam_infos_unsorted, poses = readColmapCameras(cam_extrinsics=cam_extrinsics, cam_intrinsics=cam_intrinsics, images_folder=os.path.join(path, reading_dir), eval=eval, opt=opt)
sorting_indices = sorted(range(len(cam_infos_unsorted)), key=lambda x: cam_infos_unsorted[x].image_name)
cam_infos = [cam_infos_unsorted[i] for i in sorting_indices]
sorted_poses = [poses[i] for i in sorting_indices]
cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : x.image_name)
if eval:
# train_cam_infos = [c for idx, c in enumerate(cam_infos) if (idx+1) % llffhold != 0]
# test_cam_infos = [c for idx, c in enumerate(cam_infos) if (idx+1) % llffhold == 0]
# train_poses = [c for idx, c in enumerate(sorted_poses) if (idx+1) % llffhold != 0]
# test_poses = [c for idx, c in enumerate(sorted_poses) if (idx+1) % llffhold == 0]
num_cams = len(cam_infos)
offset = 5
test_cam_infos = [c for idx, c in enumerate(cam_infos) if (idx + offset) % 10 == 0]
train_cam_infos = [c for idx, c in enumerate(cam_infos) if (idx + offset) % 10 != 0]
train_poses = [c for idx, c in enumerate(sorted_poses) if (idx + offset) % 10 != 0]
test_poses = [c for idx, c in enumerate(sorted_poses) if (idx + offset) % 10 == 0]
else:
train_cam_infos = cam_infos
test_cam_infos = []
train_poses = sorted_poses
test_poses = []
nerf_normalization = getNerfppNorm(train_cam_infos)
try:
ply_path = os.path.join(path, "sparse/0/points3D.ply")
bin_path = os.path.join(path, "sparse/0/points3D.bin")
txt_path = os.path.join(path, "sparse/0/points3D.txt")
if not os.path.exists(ply_path):
print("Converting point3d.bin to .ply, will happen only the first time you open the scene.")
try:
xyz, rgb, _ = read_points3D_binary(bin_path)
except:
xyz, rgb, _ = read_points3D_text(txt_path)
storePly(ply_path, xyz, rgb)
try:
pcd = fetchPly(ply_path)
except:
pcd = None
except:
pcd = None
ply_path = None
# Create an Open3D point cloud object
# o3d.visualization.draw_geometries([to_open3d_point_cloud(pcd)])
# np.save("poses_family.npy", sorted_poses)
# breakpoint()
# np.save("3dpoints.npy", pcd.points)
# np.save("3dcolors.npy", pcd.colors)
scene_info = SceneInfo(point_cloud=pcd,
train_cameras=train_cam_infos,
test_cameras=test_cam_infos,
nerf_normalization=nerf_normalization,
ply_path=ply_path,
train_poses=train_poses,
test_poses=test_poses)
return scene_info
def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"):
cam_infos = []
with open(os.path.join(path, transformsfile)) as json_file:
contents = json.load(json_file)
fovx = contents["camera_angle_x"]
frames = contents["frames"]
for idx, frame in enumerate(frames):
cam_name = os.path.join(path, frame["file_path"] + extension)
# NeRF 'transform_matrix' is a camera-to-world transform
c2w = np.array(frame["transform_matrix"])
# change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
c2w[:3, 1:3] *= -1
# get the world-to-camera transform and set R, T
w2c = np.linalg.inv(c2w)
R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code
T = w2c[:3, 3]
image_path = os.path.join(path, cam_name)
image_name = Path(cam_name).stem
image = Image.open(image_path)
im_data = np.array(image.convert("RGBA"))
bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0])
norm_data = im_data / 255.0
arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4])
image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB")
fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1])
FovY = fovy
FovX = fovx
cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=FovY, FovX=FovX, image=image,
image_path=image_path, image_name=image_name, width=image.size[0], height=image.size[1]))
return cam_infos
def readNerfSyntheticInfo(path, white_background, eval, extension=".png"):
print("Reading Training Transforms")
train_cam_infos = readCamerasFromTransforms(path, "transforms_train.json", white_background, extension)
print("Reading Test Transforms")
test_cam_infos = readCamerasFromTransforms(path, "transforms_test.json", white_background, extension)
if not eval:
train_cam_infos.extend(test_cam_infos)
test_cam_infos = []
nerf_normalization = getNerfppNorm(train_cam_infos)
ply_path = os.path.join(path, "points3d.ply")
if not os.path.exists(ply_path):
# Since this data set has no colmap data, we start with random points
num_pts = 100_000
print(f"Generating random point cloud ({num_pts})...")
# We create random points inside the bounds of the synthetic Blender scenes
xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3
shs = np.random.random((num_pts, 3)) / 255.0
pcd = BasicPointCloud(points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)))
storePly(ply_path, xyz, SH2RGB(shs) * 255)
try:
pcd = fetchPly(ply_path)
except:
pcd = None
scene_info = SceneInfo(point_cloud=pcd,
train_cameras=train_cam_infos,
test_cameras=test_cam_infos,
nerf_normalization=nerf_normalization,
ply_path=ply_path)
return scene_info
sceneLoadTypeCallbacks = {
"Colmap": readColmapSceneInfo,
"Blender" : readNerfSyntheticInfo
} |