File size: 5,283 Bytes
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact  [email protected]
#

import torch
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render_test as render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
from utils.pose_utils import get_tensor_from_camera
from utils.camera_utils import generate_interpolated_path
from utils.camera_utils import visualizer
import cv2
import numpy as np
import imageio


def save_interpolate_pose(model_path, iter, n_views=0):

    org_pose = np.load(model_path + f"pose/pose_{iter}.npy")
    visualizer(org_pose, ["green" for _ in org_pose], model_path + "pose/poses_optimized.png")
    # n_interp = int(10 * 30 / n_views)  # 10second, fps=30
    # all_inter_pose = []
    # for i in range(n_views-1):
    #     tmp_inter_pose = generate_interpolated_path(poses=org_pose[i:i+2], n_interp=n_interp)
    #     all_inter_pose.append(tmp_inter_pose)
    # all_inter_pose = np.array(all_inter_pose).reshape(-1, 3, 4)

    all_inter_pose = org_pose

    inter_pose_list = []
    for p in all_inter_pose:
        tmp_view = np.eye(4)
        tmp_view[:3, :3] = p[:3, :3]
        tmp_view[:3, 3] = p[:3, 3]
        inter_pose_list.append(tmp_view)
    inter_pose = np.stack(inter_pose_list, 0)
    visualizer(inter_pose, ["blue" for _ in inter_pose], model_path + "pose/poses_interpolated.png")
    np.save(model_path + "pose/pose_interpolated.npy", inter_pose)


def images_to_video(image_folder, output_video_path, fps=30):
    """
    Convert images in a folder to a video.

    Args:
    - image_folder (str): The path to the folder containing the images.
    - output_video_path (str): The path where the output video will be saved.
    - fps (int): Frames per second for the output video.
    """
    images = []

    for filename in sorted(os.listdir(image_folder)):
        if filename.endswith(('.png', '.jpg', '.jpeg', '.JPG', '.PNG')):
            image_path = os.path.join(image_folder, filename)
            image = imageio.imread(image_path)
            images.append(image)
    imageio.mimwrite(output_video_path, images, fps=fps)


def render_set(model_path, name, iteration, views, gaussians, pipeline, background):
    render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
    makedirs(render_path, exist_ok=True)

    for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
        camera_pose = get_tensor_from_camera(view.world_view_transform.transpose(0, 1))
        rendering = render(
            view, gaussians, pipeline, background, camera_pose=camera_pose
        )["render"]
        gt = view.original_image[0:3, :, :]
        torchvision.utils.save_image(
            rendering, os.path.join(render_path, "{0:05d}".format(idx) + ".png")
        )


def render_sets(
    dataset: ModelParams,
    iteration: int,
    pipeline: PipelineParams,
    skip_train: bool,
    skip_test: bool,
    args,
):

    # Applying interpolation
    # save_interpolate_pose(dataset.model_path, iteration, args.n_views)
    save_interpolate_pose(dataset.model_path, iteration)

    with torch.no_grad():
        gaussians = GaussianModel(dataset.sh_degree)
        scene = Scene(dataset, gaussians, load_iteration=iteration, opt=args, shuffle=False)

        bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
        background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")

    # render interpolated views
    render_set(
        dataset.model_path,
        "interp",
        scene.loaded_iter,
        scene.getTrainCameras(),
        gaussians,
        pipeline,
        background,
    )

    if args.get_video:
        image_folder = os.path.join(dataset.model_path, f'interp/ours_{args.iteration}/renders')
        output_video_file = os.path.join(dataset.model_path, f'rendered.mp4')
        images_to_video(image_folder, output_video_file, fps=15)


if __name__ == "__main__":
    # Set up command line argument parser
    parser = ArgumentParser(description="Testing script parameters")
    model = ModelParams(parser, sentinel=True)
    pipeline = PipelineParams(parser)
    parser.add_argument("--iteration", default=-1, type=int)
    parser.add_argument("--skip_train", action="store_true")
    parser.add_argument("--skip_test", action="store_true")
    parser.add_argument("--quiet", action="store_true")

    parser.add_argument("--get_video", action="store_true")
    parser.add_argument("--n_views", default=None, type=int)
    parser.add_argument("--scene", default=None, type=str)
    args = get_combined_args(parser)
    print("Rendering " + args.model_path)

    # Initialize system state (RNG)
    # safe_state(args.quiet)
    args.eval = False
    render_sets(
        model.extract(args),
        args.iteration,
        pipeline.extract(args),
        args.skip_train,
        args.skip_test,
        args,
    )