File size: 18,581 Bytes
0d3d29d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6873500
 
0d3d29d
0f2d89d
80de241
0d3d29d
 
 
6873500
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
"""
This is a demo to show how to use OAuth2 to connect an application to Kadi.

Read Section "OAuth2 Tokens" in Kadi documents.
Ref: https://kadi.readthedocs.io/en/stable/httpapi/intro.html#oauth2-tokens

Notes:
1. register an application in Kadi (Setting->Applications)
    - Name: KadiOAuthTest
    - Website URL: http://127.0.0.1:8000
    - Redirect URIs: http://localhost:8000/auth
    
And you will get Client ID and Client Secret, note them down and set in this file.

2. Start this app, and open browser with address "http://localhost:8000/"

"""

import json

import uvicorn
from fastapi import FastAPI, Depends
from starlette.responses import RedirectResponse
from starlette.middleware.sessions import SessionMiddleware
from authlib.integrations.starlette_client import OAuth, OAuthError
from fastapi import Request
import gradio as gr
import kadi_apy
from kadi_apy import KadiManager
from requests.compat import urljoin
from typing import List, Tuple
import pymupdf
from sentence_transformers import SentenceTransformer
import numpy as np
import faiss
from dotenv import load_dotenv
import os

# Kadi OAuth settings
load_dotenv()
KADI_CLIENT_ID = os.environ["KADI_CLIENT_ID"]
KADI_CLIENT_SECRET = os.environ["KADI_CLIENT_SECRET"]
SECRET_KEY = os.environ["SECRET_KEY"]
huggingfacehub_api_token = os.environ["huggingfacehub_api_token"]

from huggingface_hub import login
login(token=huggingfacehub_api_token)

# Set up OAuth
app = FastAPI()
oauth = OAuth()

# Set Kadi instance
instance = "my_kadi_demo_instance"  # "demo kit instance"
host = "https://demo-kadi4mat.iam.kit.edu"

base_url = host
oauth.register(
    name="kadi4mat",
    client_id=KADI_CLIENT_ID,
    client_secret=KADI_CLIENT_SECRET,
    api_base_url=f"{base_url}/api",
    access_token_url=f"{base_url}/oauth/token",
    authorize_url=f"{base_url}/oauth/authorize",
    access_token_params={
        "client_id": KADI_CLIENT_ID,
        "client_secret": KADI_CLIENT_SECRET,
    },
)

# Global LLM client
from huggingface_hub import InferenceClient
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")


embeddings_client = InferenceClient(model="sentence-transformers/all-mpnet-base-v2", token=huggingfacehub_api_token)
# embeddings_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", trust_remote_code=True)  # unused
embeddings_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2", trust_remote_code=True)

# Dependency to get the current user
def get_user(request: Request):
    if "user_access_token" in request.session:
        token = request.session["user_access_token"]
    else:
        token = None
        return None
    if token:
        try:
            manager = KadiManager(instance=instance, host=host, token=token)
            user = manager.pat_user
            return user.meta["displayname"]
        except kadi_apy.lib.exceptions.KadiAPYRequestError as e:
            print(e)
            return None
    return None  # "Authed but Failed at getting user info!"


@app.get("/")
def public(request: Request, user=Depends(get_user)):
    root_url = gr.route_utils.get_root_url(request, "/", None)
    if user:
        return RedirectResponse(url=f"{root_url}/gradio/")
    else:
        return RedirectResponse(url=f"{root_url}/main/")


@app.route("/logout")
async def logout(request: Request):
    request.session.pop("user", None)
    request.session.pop("user_id", None)
    request.session.pop("user_access_token", None)

    return RedirectResponse(url="/")


@app.route("/login")
async def login(request: Request):
    root_url = gr.route_utils.get_root_url(request, "/login", None)
    redirect_uri = request.url_for("auth")  # f"{root_url}/auth"
    return await oauth.kadi4mat.authorize_redirect(request, redirect_uri)


@app.route("/auth")
async def auth(request: Request):
    # root_url = gr.route_utils.get_root_url(request, "/auth", None)
    try:
        access_token = await oauth.kadi4mat.authorize_access_token(request)
        request.session["user_access_token"] = access_token["access_token"]

    except OAuthError as e:
        print("Error getting access token", e)
        return RedirectResponse(url="/")

    return RedirectResponse(url="/gradio")


def greet(request: gr.Request):
    return f"Welcome to Kadichat, you're logged in as: {request.username}"


def get_files_in_record(record_id, user_token, top_k=10):

    manager = KadiManager(instance=instance, host=host, pat=user_token)

    try:
        record = manager.record(identifier=record_id)
    except kadi_apy.lib.exceptions.KadiAPYInputError as e:
        raise gr.Error(e)

    file_num = record.get_number_files()

    per_page = 100  # default in kadi
    not_divisible = file_num % per_page
    if not_divisible:
        page_num = file_num // per_page + 1
    else:
        page_num = file_num // per_page

    file_names = []
    for p in range(1, page_num + 1):  # page starts at 1 in kadi
        file_names.extend(
            [
                info["name"]
                for info in record.get_filelist(page=p, per_page=per_page).json()[
                    "items"
                ]
            ]
        )

    assert file_num == len(
        file_names
    ), "Number of files did not match, please check function get_all_file_names."

    # return file_names[:top_k]
    return gr.Dropdown(
        choices=file_names[:top_k],
        label="Select file",
        info="Select (max. 3) files to chat with.",
        multiselect=True,
        max_choices=3,
        interactive=True,
    )


def get_all_records(user_token):

    if not user_token:
        return []

    manager = KadiManager(instance=instance, host=host, pat=user_token)

    host_api = manager.host if manager.host.endswith("/") else manager.host + "/"
    searched_resource = "records"
    endpoint = urljoin(
        host_api, searched_resource
    )  # e.g https://demo-kadi4mat.iam.kit.edu/api/" + "records"

    response = manager.search.search_resources("record", per_page=100)
    parsed = json.loads(response.content)

    total_pages = parsed["_pagination"]["total_pages"]

    def get_page_records(parsed_content):
        item_identifiers = []
        items = parsed_content["items"]
        for item in items:
            item_identifiers.append(item["identifier"])

        return item_identifiers

    all_records_identifiers = []
    for page in range(1, total_pages + 1):
        page_endpoint = endpoint + f"?page={page}&per_page=100"
        response = manager.make_request(page_endpoint)
        parsed = json.loads(response.content)
        all_records_identifiers.extend(get_page_records(parsed))

    return gr.Dropdown(
        choices=all_records_identifiers,
        interactive=True,
        label="Record Identifier",
        info="Select record to get file list",
    )


def _init_user_token(request: gr.Request):
    user_token = request.request.session["user_access_token"]
    return user_token


with gr.Blocks(theme=gr.themes.Ocean()) as login_demo:
    gr.Markdown(
            """<br/><br/><br/><br/><br/><br/><br/><br/>
            <center>
            <h1>Welcome to KadiChat!</h1>
            <br/><br/>
            <img src="https://i.postimg.cc/qvsQCCLS/kadichat-logo.png" alt="Kadichat logo">
            <br/><br/>
            Chat with Record in Kadi.</center>
            """
        )
    # Note: kadichat-logo is hosted on https://postimage.io/

    with gr.Row():
        with gr.Column():
            _btn_placeholder = gr.Button(visible=False)
        with gr.Column():
            btn = gr.Button("Sign in with Kadi (demo-instance)")
        with gr.Column():
            _btn_placeholder2 = gr.Button(visible=False)
    
    gr.Markdown(
        """<br/><br/><br/><br/>
            <center>
            This demo shows how to use
            <a href="https://kadi4mat.readthedocs.io/en/stable/httpapi/intro.html#oauth2-tokens">OAuth2</a> 
            to have access to Kadi.</center>
        """
    )
    _js_redirect = """
    () => {
        url = '/login' + window.location.search;
        window.open(url, '_blank');
    }
    """
    btn.click(None, js=_js_redirect)

import tempfile
import os
import pymupdf

class SimpleRAG:
    def __init__(self) -> None:
        self.documents = []
        self.embeddings_model = None
        self.embeddings = None
        self.index = None
        #self.load_pdf("Brandt et al_2024_Kadi_info_page.pdf")
        #self.build_vector_db()

    def load_pdf(self, file_path: str) -> None:
        """Extracts text from a PDF file and stores it in the property documents by page."""
        doc = pymupdf.open(file_path)
        self.documents = []
        for page_num in range(len(doc)):
            page = doc[page_num]
            text = page.get_text()
            self.documents.append({"page": page_num + 1, "content": text})
        print("PDF processed successfully!")
        

    def build_vector_db(self) -> None:
        """Builds a vector database using the content of the PDF."""
        if self.embeddings_model is None:
            self.embeddings_model = SentenceTransformer("jinaai/jina-embeddings-v2-small-en", trust_remote_code=True)  # jinaai/jina-embeddings-v2-base-de?
        # Use embeddings_client
        print("now doing embedding")
        print("len of documents", len(self.documents))
        import time
        start =time.time()
        #embedding_responses = embeddings_client.post(json={"inputs":[doc["content"] for doc in self.documents]}, task="feature-extraction")
        #self.embeddings = np.array(json.loads(embedding_responses.decode()))
        self.embeddings = self.embeddings_model.encode([doc["content"] for doc in self.documents], show_progress_bar=True)
        end = time.time()
        print("cost time", end-start)
        self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
        self.index.add(np.array(self.embeddings))
        print("Vector database built successfully!")

    def search_documents(self, query: str, k: int = 4) -> List[str]:
        """Searches for relevant documents using vector similarity."""
        # query_embedding = self.embeddings_model.encode([query], show_progress_bar=False)
        embedding_responses = embeddings_client.post(json={"inputs": [query]}, task="feature-extraction")
        query_embedding = json.loads(embedding_responses.decode())
        D, I = self.index.search(np.array(query_embedding), k)
        results = [self.documents[i]["content"] for i in I[0]]
        return results if results else ["No relevant documents found."]

def chunk_text(text, chunk_size=2048, overlap_size=256, separators=["\n\n", "\n"]):
    """Chunk text into pieces of specified size with overlap, considering separators."""
    
    # Split the text by the separators
    for sep in separators:
        text = text.replace(sep, "\n")
    
    chunks = []
    start = 0
    
    while start < len(text):
        # Determine the end of the chunk, accounting for overlap and the chunk size
        end = min(len(text), start + chunk_size)
        
        # Find a natural break point at the newline to avoid cutting words
        if end < len(text):
            while end > start and text[end] != '\n':
                end -= 1
        
        chunk = text[start:end].strip()  # Strip trailing whitespace
        chunks.append(chunk)
        
        # Move the start position forward by the overlap size
        start += chunk_size - overlap_size
    
    return chunks
    
def load_and_chunk_pdf(file_path):
    """Extracts text from a PDF file and stores it in the property documents by chunks."""
    
    with pymupdf.open(file_path) as pdf:
        text = ""
        for page in pdf:
            text += page.get_text()

        chunks = chunk_text(text)
        documents = []
        for chunk in chunks:
            documents.append({"content": chunk, "metadata": pdf.metadata})
        
        return documents

def load_pdf(file_path: str) -> None:
    """Extracts text from a PDF file and stores it in the property documents by page."""
    doc = pymupdf.open(file_path)
    documents = []
    for page_num in range(len(doc)):
        page = doc[page_num]
        text = page.get_text()
        documents.append({"page": page_num + 1, "content": text})
    print("PDF processed successfully!")
    return documents
        
def prepare_file_for_chat(record_id, file_names, token, progress=gr.Progress()):
    if not file_names:
        raise gr.Error("No file selected")
    progress(0, desc="Starting")
    # Create connection to kadi    
    manager = KadiManager(instance=instance, host=host, pat=token)
    record = manager.record(identifier=record_id)
    progress(0.2, desc="Loading files...")
    # Parse files
    documents = []
    # Download
    for file_name in file_names:
        file_id = record.get_file_id(file_name)
        with tempfile.TemporaryDirectory(prefix="tmp-kadichat-downloads-") as temp_dir:
            print(temp_dir)
            temp_file_location = os.path.join(temp_dir, file_name)
            record.download_file(file_id, temp_file_location)
            # parse document
            docs = load_and_chunk_pdf(temp_file_location)
            documents.extend(docs)

    progress(0.4, desc="Embedding documents...")
    user_rag = SimpleRAG()
    user_rag.documents = documents
    user_rag.embeddings_model = embeddings_model
    user_rag.build_vector_db()
    # print(documents[:2])
    print("user rag created")
    progress(1, desc="ready to chat")
    return "ready to chat", user_rag

def preprocess_response(response: str) -> str:
    """Preprocesses the response to make it more polished."""
    # response = response.strip()
    # response = response.replace("\n\n", "\n")
    # response = response.replace(" ,", ",")
    # response = response.replace(" .", ".")
    # response = " ".join(response.split())
    # if not any(word in response.lower() for word in ["sorry", "apologize", "empathy"]):
    #     response = "I'm here to help. " + response
    return response


def respond(message: str, history: List[Tuple[str, str]], user_session_rag):
    
    # message is the current input query from user
    # RAG
    retrieved_docs = user_session_rag.search_documents(message)
    context = "\n".join(retrieved_docs)
    system_message = "You are an assistant to help user to answer question related to Kadi based on Relevant documents.\nRelevant documents: {}".format(context)
    messages = [{"role": "assistant", "content": system_message}]

    # Add history for conversational chat, TODO
    # for val in history:
    #     #if val[0]:
    #     messages.append({"role": "user", "content": val[0]})
    #     #if val[1]:
    #     messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": f"\nQuestion: {message}"})

    print("-----------------")
    print(messages)
    print("-----------------")
    # Get anwser from LLM
    response = client.chat_completion(messages, max_tokens=2048, temperature=0.0)  #, top_p=0.9)
    response_content = "".join([choice.message['content'] for choice in response.choices if 'content' in choice.message])
    
    # Process response
    polished_response = preprocess_response(response_content)

    history.append((message, polished_response))
    return history, ""


app.add_middleware(SessionMiddleware, secret_key=SECRET_KEY)
app = gr.mount_gradio_app(app, login_demo, path="/main")

# Gradio interface
with gr.Blocks(theme=gr.themes.Ocean()) as main_demo:

    # State for storing user token
    _state_user_token = gr.State([])

    user_session_rag = gr.State(
        "placeholder", time_to_live=3600
    )  # clean state after 1h
    
    with gr.Row():
        with gr.Column(scale=7):
            m = gr.Markdown("Welcome to Chatbot!")
            main_demo.load(greet, None, m)
        with gr.Column(scale=1):
            gr.Button("Logout", link="/logout")

    with gr.Tab("Main"):
        with gr.Row():
            with gr.Column(scale=7):
                chatbot = gr.Chatbot()

            with gr.Column(scale=3):
                record_list = gr.Dropdown(label="Record Identifier")
                record_file_dropdown = gr.Dropdown(
                    choices=[""],
                    label="Select file",
                    info="Select (max. 3) files to chat with.",
                    multiselect=True,
                    max_choices=3,
                )

                gr.Markdown("  " * 200)
                # Use .then to ensure get token first
                main_demo.load(_init_user_token, None, _state_user_token).then(
                    get_all_records, _state_user_token, record_list
                )

                parse_files = gr.Button("Parse files")
                # message_box = gr.Markdown("")
                message_box =  gr.Textbox(label="", value="progress bar", interactive=False)
                # Interactions
                # Update file list after selecting record
                record_list.select(
                    fn=get_files_in_record,
                    inputs=[record_list, _state_user_token],
                    outputs=record_file_dropdown,
                )
                # Prepare files for chatbot
                parse_files.click(fn=prepare_file_for_chat, inputs=[record_list, record_file_dropdown, _state_user_token], outputs=[message_box, user_session_rag])

        with gr.Row():
            txt_input = gr.Textbox(
                show_label=False,
                placeholder="Type your question here...",
                lines=1
            )
            submit_btn = gr.Button("Submit", scale=1)
            refresh_btn = gr.Button("Refresh Chat", scale=1, variant="secondary")

        example_questions = [
            ["Summarize the paper."],
            ["how to create record in kadi4mat?"],
        ]

        gr.Examples(examples=example_questions, inputs=[txt_input])

        txt_input.submit(fn=respond, inputs=[txt_input, chatbot, user_session_rag], outputs=[chatbot, txt_input])
        submit_btn.click(fn=respond, inputs=[txt_input, chatbot, user_session_rag], outputs=[chatbot, txt_input])
        refresh_btn.click(lambda: [], None, chatbot)

app = gr.mount_gradio_app(app, main_demo, path="/gradio", auth_dependency=get_user)


#def launch_gradio():
#    login_demo.launch(server_port=7860, share=True)


import threading

if __name__ == "__main__":
    # Launch Gradio with share=True in a separate thread
    # threading.Thread(target=launch_gradio).start()
    uvicorn.run(app, port=7860, host="0.0.0.0")