Spaces:
Runtime error
Runtime error
karin.brisker
commited on
Commit
·
7630e84
1
Parent(s):
7e27fe1
app
Browse files- app.py +27 -0
- audio_to_transcript.py +53 -0
- main.py +60 -0
- requirements.txt +6 -0
- resources/languages.json +25 -0
- translator.py +31 -0
- utils.py +6 -0
- video_to_audio_converter.py +37 -0
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from main import LANGS, Pipeline
|
4 |
+
|
5 |
+
|
6 |
+
def video_identity(video, source_language="English", target_language="Spanish"):
|
7 |
+
video_path = pipeline(video, "sample", source_language, target_language)
|
8 |
+
|
9 |
+
return video_path
|
10 |
+
|
11 |
+
|
12 |
+
demo = gr.Interface(video_identity,
|
13 |
+
inputs=[gr.Video(),
|
14 |
+
gr.components.Dropdown(label="Source Language", choices=LANGS),
|
15 |
+
gr.components.Dropdown(label="Target Language", choices=LANGS),
|
16 |
+
],
|
17 |
+
outputs="playable_video",
|
18 |
+
examples=[[
|
19 |
+
os.path.join(os.path.dirname(__file__),
|
20 |
+
"sample/iPhone_14_Pro.mp4"), "English"]],
|
21 |
+
cache_examples=True,
|
22 |
+
title="Video Subtitler Demo 🍿🍿🍿",
|
23 |
+
description="This demo is a proof of concept for a video subtitler. "
|
24 |
+
)
|
25 |
+
|
26 |
+
pipeline = Pipeline()
|
27 |
+
demo.launch()
|
audio_to_transcript.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import whisper
|
6 |
+
from whisper.utils import get_writer
|
7 |
+
|
8 |
+
import numpy as np # for counting parameters
|
9 |
+
|
10 |
+
from utils import log
|
11 |
+
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
|
14 |
+
|
15 |
+
class TranscribeAudio:
|
16 |
+
def __init__(self):
|
17 |
+
self.model = whisper.load_model("base", device=device)
|
18 |
+
log(
|
19 |
+
f"Model is {'multilingual' if self.model.is_multilingual else 'English-only'} "
|
20 |
+
f"and has {sum(np.prod(p.shape) for p in self.model.parameters()):,} parameters."
|
21 |
+
)
|
22 |
+
self.options = {"max_line_width": 20, "max_line_count": 3, "highlight_words": True}
|
23 |
+
|
24 |
+
def transcribe(self, audio_file_path: str, language: str = "en") -> Dict:
|
25 |
+
log(f"Transcribing {audio_file_path} in {language}")
|
26 |
+
options = dict(language=language, beam_size=5, best_of=5)
|
27 |
+
transcribe_options = dict(task="transcribe", **options)
|
28 |
+
result = self.model.transcribe(audio_file_path, **transcribe_options)
|
29 |
+
return result
|
30 |
+
|
31 |
+
def save_output(self, transcript_output: Dict, audio_file_path: str) -> str:
|
32 |
+
filename, ext = os.path.splitext(audio_file_path)
|
33 |
+
directory = os.path.dirname(filename)
|
34 |
+
log(f"Saving output to {directory} directory as {filename}.vtt")
|
35 |
+
# Save as an SRT file
|
36 |
+
srt_writer = get_writer("srt", directory)
|
37 |
+
srt_writer(transcript_output, audio_file_path, self.options)
|
38 |
+
|
39 |
+
# Save as a VTT file
|
40 |
+
vtt_writer = get_writer("vtt", directory)
|
41 |
+
vtt_writer(transcript_output, audio_file_path, self.options)
|
42 |
+
|
43 |
+
return f"{filename}.vtt"
|
44 |
+
|
45 |
+
def __call__(self, audio_file_path: str, output_dir: str, input_language: str = "en") -> str:
|
46 |
+
transcript = self.transcribe(audio_file_path)
|
47 |
+
transcript_path = self.save_output(transcript, audio_file_path)
|
48 |
+
return transcript_path
|
49 |
+
|
50 |
+
|
51 |
+
if __name__ == '__main__':
|
52 |
+
transcribe_audio = TranscribeAudio()
|
53 |
+
transcribe_audio('sample', 'iPhone_14_Pro.mp3')
|
main.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import subprocess
|
5 |
+
|
6 |
+
from audio_to_transcript import TranscribeAudio
|
7 |
+
from translator import MyTranslator
|
8 |
+
from utils import log
|
9 |
+
from video_to_audio_converter import VideoToAudioConverter
|
10 |
+
|
11 |
+
with open('resources/languages.json', 'r') as f:
|
12 |
+
code2lang = json.load(f)
|
13 |
+
|
14 |
+
# language code lookup by name, with a few language aliases
|
15 |
+
lang2code = {
|
16 |
+
**{language: code for code, language in code2lang.items()},
|
17 |
+
}
|
18 |
+
|
19 |
+
LANGS = sorted(lang2code.keys())
|
20 |
+
|
21 |
+
|
22 |
+
class Pipeline:
|
23 |
+
def __init__(self):
|
24 |
+
self.video_to_audio = VideoToAudioConverter()
|
25 |
+
self.audio_to_text = TranscribeAudio()
|
26 |
+
self.translator = MyTranslator()
|
27 |
+
|
28 |
+
def __call__(self, video_path: str, output_path: str, input_language: str, output_language: str):
|
29 |
+
filename, ext = os.path.splitext(video_path)
|
30 |
+
|
31 |
+
audio_path = self.video_to_audio.convert(video_path)
|
32 |
+
subtitle_path = self.audio_to_text(audio_path, output_path, input_language)
|
33 |
+
if input_language != output_language:
|
34 |
+
subtitle_path = self.translator.translate(subtitle_path, lang2code[input_language],
|
35 |
+
lang2code[output_language])
|
36 |
+
log(f"Embedding subtitles on input video and saves output video to {output_path}/output.mp4")
|
37 |
+
# Use ffmpeg to add the subtitles to the input MP4 file and create the output MP4 file
|
38 |
+
|
39 |
+
subtitles_cmd = ["ffmpeg", "-y", "-i", video_path, "-vf", f"subtitles={subtitle_path}", "-c:a", "copy",
|
40 |
+
f"{filename}_{output_language}_output.mp4"]
|
41 |
+
|
42 |
+
subprocess.run(subtitles_cmd, check=True)
|
43 |
+
return f"{filename}_{output_language}_output.mp4"
|
44 |
+
|
45 |
+
|
46 |
+
if __name__ == '__main__':
|
47 |
+
parser = argparse.ArgumentParser(
|
48 |
+
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
49 |
+
parser.add_argument("video", type=str,
|
50 |
+
help="video path to transcribe")
|
51 |
+
parser.add_argument("--output_dir", "-o", type=str,
|
52 |
+
default=".", help="directory to save the outputs")
|
53 |
+
parser.add_argument("--input_language", type=str, default=None, choices=LANGS,
|
54 |
+
help="language spoken in the video, skip to perform language detection")
|
55 |
+
parser.add_argument("--output_language", type=str, default=None, choices=LANGS,
|
56 |
+
help="required translation language")
|
57 |
+
|
58 |
+
args = parser.parse_args()
|
59 |
+
pipeline = Pipeline()
|
60 |
+
pipeline(args.video, args.output_dir, args.input_language, args.output_language)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ffmpeg_python==0.2.0
|
2 |
+
googletrans==3.1.0a0
|
3 |
+
gradio==3.27.0
|
4 |
+
numpy==1.23.5
|
5 |
+
openai_whisper==20230314
|
6 |
+
torch==2.0.0
|
resources/languages.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"en": "English",
|
3 |
+
"zh": "Chinese",
|
4 |
+
"de": "German",
|
5 |
+
"es": "Spanish",
|
6 |
+
"ru": "Russian",
|
7 |
+
"ko": "Korean",
|
8 |
+
"fr": "French",
|
9 |
+
"ja": "Japanese",
|
10 |
+
"pt": "Portuguese",
|
11 |
+
"tr": "Turkish",
|
12 |
+
"pl": "Polish",
|
13 |
+
"ca": "Catalan",
|
14 |
+
"nl": "Dutch",
|
15 |
+
"ar": "Arabic",
|
16 |
+
"sv": "Swedish",
|
17 |
+
"it": "Italian",
|
18 |
+
"id": "Indonesian",
|
19 |
+
"fi": "Finnish",
|
20 |
+
"he": "Hebrew",
|
21 |
+
"uk": "Ukrainian",
|
22 |
+
"no": "Norwegian",
|
23 |
+
"th": "Thai",
|
24 |
+
"la": "Latin"
|
25 |
+
}
|
translator.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from googletrans import Translator
|
4 |
+
|
5 |
+
from utils import log
|
6 |
+
|
7 |
+
|
8 |
+
class MyTranslator:
|
9 |
+
def __init__(self):
|
10 |
+
self.translator = Translator()
|
11 |
+
|
12 |
+
def translate(self, text_file_path, source_language, target_language):
|
13 |
+
# Open the input file and read its contents
|
14 |
+
with open(text_file_path, 'r') as f:
|
15 |
+
input_text = f.read()
|
16 |
+
|
17 |
+
filename, ext = os.path.splitext(text_file_path)
|
18 |
+
output_file_path = f"{filename}_translated{ext}"
|
19 |
+
log(f"Translating text to {target_language} and saving to {output_file_path}")
|
20 |
+
# Translate the text to the desired language
|
21 |
+
output_text = self.translator.translate(input_text, dest=target_language).text
|
22 |
+
# Write the translated text to the output file
|
23 |
+
with open(output_file_path, 'w') as f:
|
24 |
+
f.write(output_text)
|
25 |
+
|
26 |
+
return output_file_path
|
27 |
+
|
28 |
+
|
29 |
+
if __name__ == '__main__':
|
30 |
+
translator = MyTranslator()
|
31 |
+
translation_path = translator.translate('sample/iPhone_14_Pro.vtt', 'en', 'es')
|
utils.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
|
4 |
+
def log(message):
|
5 |
+
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
6 |
+
print(f'[{timestamp}] {message}')
|
video_to_audio_converter.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
import ffmpeg
|
5 |
+
|
6 |
+
from utils import log
|
7 |
+
|
8 |
+
|
9 |
+
class VideoToAudioConverter:
|
10 |
+
@staticmethod
|
11 |
+
def convert(path_to_video: str, output_ext="mp3") -> str:
|
12 |
+
"""Converts video to audio directly using `ffmpeg` command
|
13 |
+
with the help of subprocess module"""
|
14 |
+
log("Converts video to audio")
|
15 |
+
filename, ext = os.path.splitext(path_to_video)
|
16 |
+
subprocess.call(["ffmpeg",
|
17 |
+
"-y",
|
18 |
+
"-i",
|
19 |
+
path_to_video,
|
20 |
+
f"{filename}.{output_ext}"],
|
21 |
+
stdout=subprocess.DEVNULL,
|
22 |
+
stderr=subprocess.STDOUT)
|
23 |
+
|
24 |
+
video_length = float(ffmpeg.probe(path_to_video)['format']['duration'])
|
25 |
+
audio_length = float(ffmpeg.probe(f"{filename}.{output_ext}")['format']['duration'])
|
26 |
+
if video_length - audio_length > 1:
|
27 |
+
raise Exception("Conversion failed")
|
28 |
+
return f"{filename}.{output_ext}"
|
29 |
+
|
30 |
+
|
31 |
+
if __name__ == '__main__':
|
32 |
+
video_to_audio_converter = VideoToAudioConverter()
|
33 |
+
video_to_audio_converter.convert('iPhone_14_Pro.mp4')
|
34 |
+
if os.path.exists('sample/iPhone_14_Pro.mp3'):
|
35 |
+
log("File converted successfully")
|
36 |
+
else:
|
37 |
+
log("File conversion failed")
|