Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,128 Bytes
26d4aa7 32aef8c 26d4aa7 4af557d 26d4aa7 4af557d 26d4aa7 4af557d 26d4aa7 4af557d 26d4aa7 4af557d 26d4aa7 4af557d 26d4aa7 4af557d 26d4aa7 4af557d 26d4aa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
'''
Modified from https://github.com/lllyasviel/Paints-UNDO/blob/main/gradio_app.py
'''
import functools
import spaces
import gradio as gr
import numpy as np
import cv2
import torch
from PIL import Image
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
from imgutils.metrics import lpips_difference
from imgutils.tagging import get_wd14_tags
from diffusers_helper.code_cond import unet_add_coded_conds
from diffusers_helper.cat_cond import unet_add_concat_conds
from diffusers_helper.k_diffusion import KDiffusionSampler
from diffusers_helper.attention import AttnProcessor2_0_xformers, XFORMERS_AVAIL
from lineart_models import MangaLineExtraction, LineartAnimeDetector, LineartDetector
def resize_and_center_crop(
image, target_width, target_height=None, interpolation=cv2.INTER_AREA
):
original_height, original_width = image.shape[:2]
if target_height is None:
aspect_ratio = original_width / original_height
target_pixel_count = target_width * target_width
target_height = (target_pixel_count / aspect_ratio) ** 0.5
target_width = target_height * aspect_ratio
target_height = int(target_height)
target_width = int(target_width)
print(
f"original_height={original_height}, "
f"original_width={original_width}, "
f"target_height={target_height}, "
f"target_width={target_width}"
)
k = max(target_height / original_height, target_width / original_width)
new_width = int(round(original_width * k))
new_height = int(round(original_height * k))
resized_image = cv2.resize(
image, (new_width, new_height), interpolation=interpolation
)
x_start = (new_width - target_width) // 2
y_start = (new_height - target_height) // 2
cropped_image = resized_image[
y_start : y_start + target_height, x_start : x_start + target_width
]
return cropped_image
class ModifiedUNet(UNet2DConditionModel):
@classmethod
def from_config(cls, *args, **kwargs):
m = super().from_config(*args, **kwargs)
unet_add_concat_conds(unet=m, new_channels=4)
unet_add_coded_conds(unet=m, added_number_count=1)
return m
DEVICE = "cuda"
torch._dynamo.config.cache_size_limit = 256
lineart_models = []
lineart_model = MangaLineExtraction("cuda", "./hf_download")
lineart_model.load_model()
lineart_model.model.to(device=DEVICE).eval()
lineart_models.append(lineart_model)
lineart_model = LineartAnimeDetector()
lineart_model.model.to(device=DEVICE).eval()
lineart_models.append(lineart_model)
lineart_model = LineartDetector()
lineart_model.model.to(device=DEVICE).eval()
lineart_models.append(lineart_model)
model_name = "lllyasviel/paints_undo_single_frame"
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(
model_name, subfolder="tokenizer"
)
text_encoder: CLIPTextModel = (
CLIPTextModel.from_pretrained(
model_name,
subfolder="text_encoder",
)
.to(dtype=torch.float16, device=DEVICE)
.eval()
)
vae: AutoencoderKL = (
AutoencoderKL.from_pretrained(
model_name,
subfolder="vae",
)
.to(dtype=torch.bfloat16, device=DEVICE)
.eval()
)
unet: ModifiedUNet = (
ModifiedUNet.from_pretrained(
model_name,
subfolder="unet",
)
.to(dtype=torch.float16, device=DEVICE)
.eval()
)
if XFORMERS_AVAIL:
unet.set_attn_processor(AttnProcessor2_0_xformers())
vae.set_attn_processor(AttnProcessor2_0_xformers())
else:
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
# text_encoder = torch.compile(text_encoder, backend="eager", dynamic=True)
# vae = torch.compile(vae, backend="eager", dynamic=True)
# unet = torch.compile(unet, mode="reduce-overhead", dynamic=True)
# for model in lineart_models:
# model.model = torch.compile(model.model, backend="eager", dynamic=True)
k_sampler = KDiffusionSampler(
unet=unet,
timesteps=1000,
linear_start=0.00085,
linear_end=0.020,
linear=True,
)
@torch.inference_mode()
def encode_cropped_prompt_77tokens(txt: str):
cond_ids = tokenizer(
txt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids.to(device=text_encoder.device)
text_cond = text_encoder(cond_ids, attention_mask=None).last_hidden_state
return text_cond
@torch.inference_mode()
def encode_cropped_prompt(txt: str, max_length=150):
cond_ids = tokenizer(
txt,
padding="max_length",
max_length=max_length + 2,
truncation=True,
return_tensors="pt",
).input_ids.to(device=text_encoder.device)
if max_length + 2 > tokenizer.model_max_length:
input_ids = cond_ids.squeeze(0)
id_list = list(range(1, max_length + 2 - tokenizer.model_max_length + 2, tokenizer.model_max_length - 2))
text_cond_list = []
for i in id_list:
ids_chunk = (
input_ids[0].unsqueeze(0),
input_ids[i : i + tokenizer.model_max_length - 2],
input_ids[-1].unsqueeze(0),
)
if torch.all(ids_chunk[1] == tokenizer.pad_token_id):
break
text_cond = text_encoder(torch.concat(ids_chunk).unsqueeze(0)).last_hidden_state
if text_cond_list == []:
text_cond_list.append(text_cond[:, :1])
text_cond_list.append(text_cond[:, 1:tokenizer.model_max_length - 1])
text_cond_list.append(text_cond[:, -1:])
text_cond = torch.concat(text_cond_list, dim=1)
else:
text_cond = text_encoder(
cond_ids, attention_mask=None
).last_hidden_state
return text_cond.flatten(0, 1).unsqueeze(0)
@torch.inference_mode()
def pytorch2numpy(imgs):
results = []
for x in imgs:
y = x.movedim(0, -1)
y = y * 127.5 + 127.5
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
results.append(y)
return results
@torch.inference_mode()
def numpy2pytorch(imgs):
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
h = h.movedim(-1, 1)
return h
@spaces.GPU
def interrogator_process(x):
img = Image.fromarray(x)
rating, features, chars = get_wd14_tags(
img, general_threshold=0.3, character_threshold=0.75, no_underline=True
)
result = ""
for char in chars:
result += char
result += ", "
for feature in features:
result += feature
result += ", "
result += max(rating, key=rating.get)
return result, f"{len(tokenizer.tokenize(result))}"
@spaces.GPU
@torch.inference_mode()
def process(
input_fg,
prompt,
input_undo_steps,
image_width,
seed,
steps,
n_prompt,
cfg,
num_sets,
progress=gr.Progress(),
):
lineart_fg = input_fg
linearts = []
for model in lineart_models:
linearts.append(model(lineart_fg))
fg = resize_and_center_crop(input_fg, image_width)
for i, lineart in enumerate(linearts):
lineart = resize_and_center_crop(lineart, fg.shape[1], fg.shape[0])
linearts[i] = lineart
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = (
vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
)
conds = encode_cropped_prompt(prompt)
unconds = encode_cropped_prompt_77tokens(n_prompt)
print(conds.shape, unconds.shape)
torch.cuda.empty_cache()
fs = torch.tensor(input_undo_steps).to(device=unet.device, dtype=torch.long)
initial_latents = torch.zeros_like(concat_conds)
concat_conds = concat_conds.to(device=unet.device, dtype=unet.dtype)
latents = []
rng = torch.Generator(device=DEVICE).manual_seed(int(seed))
latents = (
k_sampler(
initial_latent=initial_latents,
strength=1.0,
num_inference_steps=steps,
guidance_scale=cfg,
batch_size=len(input_undo_steps) * num_sets,
generator=rng,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
cross_attention_kwargs={
"concat_conds": concat_conds,
"coded_conds": fs,
},
same_noise_in_batch=False,
progress_tqdm=functools.partial(
progress.tqdm, desc="Generating Key Frames"
),
).to(vae.dtype)
/ vae.config.scaling_factor
)
torch.cuda.empty_cache()
pixels = torch.concat(
[vae.decode(latent.unsqueeze(0)).sample for latent in latents]
)
pixels = pytorch2numpy(pixels)
pixels_with_lpips = []
lineart_pils = [Image.fromarray(lineart) for lineart in linearts]
for pixel in pixels:
pixel_pil = Image.fromarray(pixel)
pixels_with_lpips.append(
(
sum(
[
lpips_difference(lineart_pil, pixel_pil)
for lineart_pil in lineart_pils
]
),
pixel,
)
)
pixels = np.stack(
[i[1] for i in sorted(pixels_with_lpips, key=lambda x: x[0])], axis=0
)
torch.cuda.empty_cache()
return pixels, np.stack(linearts)
block = gr.Blocks().queue()
with block:
gr.Markdown("# Sketch/Lineart extractor")
with gr.Row():
with gr.Column():
input_fg = gr.Image(
sources=["upload"], type="numpy", label="Image", height=384
)
with gr.Row():
with gr.Column(scale=5):
prompt = gr.Textbox(label="Output Prompt", interactive=True)
n_prompt = gr.Textbox(
label="Negative Prompt",
value="lowres, worst quality, bad anatomy, bad hands, text, extra digit, fewer digits, cropped, low quality, jpeg artifacts, signature, watermark, username",
)
input_undo_steps = gr.Dropdown(
label="Operation Steps",
value=[900, 925, 950, 975],
choices=list(range(0, 1000, 5)),
multiselect=True,
)
num_sets = gr.Slider(
label="Num Sets", minimum=1, maximum=10, value=3, step=1
)
with gr.Column(scale=2, min_width=160):
token_counter = gr.Textbox(
label="Tokens Count", lines=1, interactive=False
)
recaption_button = gr.Button(value="Tagging", interactive=True)
seed = gr.Slider(
label="Seed", minimum=0, maximum=50000, step=1, value=37462
)
image_width = gr.Slider(
label="Target size",
minimum=512,
maximum=1024,
value=768,
step=32,
)
steps = gr.Slider(
label="Steps", minimum=1, maximum=32, value=16, step=1
)
cfg = gr.Slider(
label="CFG Scale", minimum=1.0, maximum=16, value=5, step=0.05
)
with gr.Column():
key_gen_button = gr.Button(value="Generate Sketch", interactive=False)
gr.Markdown("#### Sketch Outputs")
result_gallery = gr.Gallery(
height=384, object_fit="contain", label="Sketch Outputs", columns=4
)
gr.Markdown("#### Line Art Outputs")
lineart_result = gr.Gallery(
height=384,
object_fit="contain",
label="LineArt outputs",
)
input_fg.change(
lambda x: [
*(interrogator_process(x) if x is not None else ("", "")),
gr.update(interactive=True),
],
inputs=[input_fg],
outputs=[prompt, token_counter, key_gen_button],
)
recaption_button.click(
lambda x: [
*(interrogator_process(x) if x is not None else ("", "")),
gr.update(interactive=True),
],
inputs=[input_fg],
outputs=[prompt, token_counter, key_gen_button],
)
prompt.change(
lambda x: len(tokenizer.tokenize(x)), inputs=[prompt], outputs=[token_counter]
)
key_gen_button.click(
fn=process,
inputs=[
input_fg,
prompt,
input_undo_steps,
image_width,
seed,
steps,
n_prompt,
cfg,
num_sets,
],
outputs=[result_gallery, lineart_result],
).then(
lambda: gr.update(interactive=True),
outputs=[key_gen_button],
)
block.queue().launch()
|