File size: 13,128 Bytes
26d4aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32aef8c
26d4aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4af557d
26d4aa7
 
4af557d
 
 
26d4aa7
 
 
 
 
 
 
 
4af557d
26d4aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4af557d
26d4aa7
 
 
 
 
4af557d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26d4aa7
 
4af557d
26d4aa7
 
 
 
 
 
 
 
 
 
 
 
 
4af557d
 
 
 
 
 
 
 
 
26d4aa7
 
 
4af557d
 
 
 
26d4aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
'''
Modified from https://github.com/lllyasviel/Paints-UNDO/blob/main/gradio_app.py
'''
import functools

import spaces
import gradio as gr
import numpy as np
import cv2
import torch

from PIL import Image
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
from imgutils.metrics import lpips_difference
from imgutils.tagging import get_wd14_tags

from diffusers_helper.code_cond import unet_add_coded_conds
from diffusers_helper.cat_cond import unet_add_concat_conds
from diffusers_helper.k_diffusion import KDiffusionSampler
from diffusers_helper.attention import AttnProcessor2_0_xformers, XFORMERS_AVAIL

from lineart_models import MangaLineExtraction, LineartAnimeDetector, LineartDetector


def resize_and_center_crop(
    image, target_width, target_height=None, interpolation=cv2.INTER_AREA
):
    original_height, original_width = image.shape[:2]
    if target_height is None:
        aspect_ratio = original_width / original_height
        target_pixel_count = target_width * target_width
        target_height = (target_pixel_count / aspect_ratio) ** 0.5
        target_width = target_height * aspect_ratio
    target_height = int(target_height)
    target_width = int(target_width)
    print(
        f"original_height={original_height}, "
        f"original_width={original_width}, "
        f"target_height={target_height}, "
        f"target_width={target_width}"
    )
    k = max(target_height / original_height, target_width / original_width)
    new_width = int(round(original_width * k))
    new_height = int(round(original_height * k))
    resized_image = cv2.resize(
        image, (new_width, new_height), interpolation=interpolation
    )
    x_start = (new_width - target_width) // 2
    y_start = (new_height - target_height) // 2
    cropped_image = resized_image[
        y_start : y_start + target_height, x_start : x_start + target_width
    ]
    return cropped_image


class ModifiedUNet(UNet2DConditionModel):
    @classmethod
    def from_config(cls, *args, **kwargs):
        m = super().from_config(*args, **kwargs)
        unet_add_concat_conds(unet=m, new_channels=4)
        unet_add_coded_conds(unet=m, added_number_count=1)
        return m


DEVICE = "cuda"
torch._dynamo.config.cache_size_limit = 256


lineart_models = []

lineart_model = MangaLineExtraction("cuda", "./hf_download")
lineart_model.load_model()
lineart_model.model.to(device=DEVICE).eval()
lineart_models.append(lineart_model)

lineart_model = LineartAnimeDetector()
lineart_model.model.to(device=DEVICE).eval()
lineart_models.append(lineart_model)

lineart_model = LineartDetector()
lineart_model.model.to(device=DEVICE).eval()
lineart_models.append(lineart_model)


model_name = "lllyasviel/paints_undo_single_frame"
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(
    model_name, subfolder="tokenizer"
)
text_encoder: CLIPTextModel = (
    CLIPTextModel.from_pretrained(
        model_name,
        subfolder="text_encoder",
    )
    .to(dtype=torch.float16, device=DEVICE)
    .eval()
)
vae: AutoencoderKL = (
    AutoencoderKL.from_pretrained(
        model_name,
        subfolder="vae",
    )
    .to(dtype=torch.bfloat16, device=DEVICE)
    .eval()
)
unet: ModifiedUNet = (
    ModifiedUNet.from_pretrained(
        model_name,
        subfolder="unet",
    )
    .to(dtype=torch.float16, device=DEVICE)
    .eval()
)

if XFORMERS_AVAIL:
    unet.set_attn_processor(AttnProcessor2_0_xformers())
    vae.set_attn_processor(AttnProcessor2_0_xformers())
else:
    unet.set_attn_processor(AttnProcessor2_0())
    vae.set_attn_processor(AttnProcessor2_0())

# text_encoder = torch.compile(text_encoder, backend="eager", dynamic=True)
# vae = torch.compile(vae, backend="eager", dynamic=True)
# unet = torch.compile(unet, mode="reduce-overhead", dynamic=True)
# for model in lineart_models:
#     model.model = torch.compile(model.model, backend="eager", dynamic=True)
k_sampler = KDiffusionSampler(
    unet=unet,
    timesteps=1000,
    linear_start=0.00085,
    linear_end=0.020,
    linear=True,
)


@torch.inference_mode()
def encode_cropped_prompt_77tokens(txt: str):
    cond_ids = tokenizer(
        txt,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    ).input_ids.to(device=text_encoder.device)
    text_cond = text_encoder(cond_ids, attention_mask=None).last_hidden_state
    return text_cond


@torch.inference_mode()
def encode_cropped_prompt(txt: str, max_length=150):
    cond_ids = tokenizer(
        txt,
        padding="max_length",
        max_length=max_length + 2,
        truncation=True,
        return_tensors="pt",
    ).input_ids.to(device=text_encoder.device)
    if max_length + 2 > tokenizer.model_max_length:
        input_ids = cond_ids.squeeze(0)
        id_list = list(range(1, max_length + 2 - tokenizer.model_max_length + 2, tokenizer.model_max_length - 2))
        text_cond_list = []
        for i in id_list:
            ids_chunk = (
                input_ids[0].unsqueeze(0),
                input_ids[i : i + tokenizer.model_max_length - 2],
                input_ids[-1].unsqueeze(0),
            )
            if torch.all(ids_chunk[1] == tokenizer.pad_token_id):
                break
            text_cond = text_encoder(torch.concat(ids_chunk).unsqueeze(0)).last_hidden_state
            if text_cond_list == []:
                text_cond_list.append(text_cond[:, :1])
            text_cond_list.append(text_cond[:, 1:tokenizer.model_max_length - 1])
        text_cond_list.append(text_cond[:, -1:])
        text_cond = torch.concat(text_cond_list, dim=1)
    else:
        text_cond = text_encoder(
            cond_ids, attention_mask=None
        ).last_hidden_state
    return text_cond.flatten(0, 1).unsqueeze(0)


@torch.inference_mode()
def pytorch2numpy(imgs):
    results = []
    for x in imgs:
        y = x.movedim(0, -1)
        y = y * 127.5 + 127.5
        y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
        results.append(y)
    return results


@torch.inference_mode()
def numpy2pytorch(imgs):
    h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
    h = h.movedim(-1, 1)
    return h


@spaces.GPU
def interrogator_process(x):
    img = Image.fromarray(x)
    rating, features, chars = get_wd14_tags(
        img, general_threshold=0.3, character_threshold=0.75, no_underline=True
    )
    result = ""
    for char in chars:
        result += char
        result += ", "
    for feature in features:
        result += feature
        result += ", "
    result += max(rating, key=rating.get)
    return result, f"{len(tokenizer.tokenize(result))}"


@spaces.GPU
@torch.inference_mode()
def process(
    input_fg,
    prompt,
    input_undo_steps,
    image_width,
    seed,
    steps,
    n_prompt,
    cfg,
    num_sets,
    progress=gr.Progress(),
):
    lineart_fg = input_fg
    linearts = []
    for model in lineart_models:
        linearts.append(model(lineart_fg))
    fg = resize_and_center_crop(input_fg, image_width)
    for i, lineart in enumerate(linearts):
        lineart = resize_and_center_crop(lineart, fg.shape[1], fg.shape[0])
        linearts[i] = lineart

    concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
    concat_conds = (
        vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
    )

    conds = encode_cropped_prompt(prompt)
    unconds = encode_cropped_prompt_77tokens(n_prompt)
    print(conds.shape, unconds.shape)
    torch.cuda.empty_cache()

    fs = torch.tensor(input_undo_steps).to(device=unet.device, dtype=torch.long)
    initial_latents = torch.zeros_like(concat_conds)
    concat_conds = concat_conds.to(device=unet.device, dtype=unet.dtype)
    latents = []
    rng = torch.Generator(device=DEVICE).manual_seed(int(seed))
    latents = (
        k_sampler(
            initial_latent=initial_latents,
            strength=1.0,
            num_inference_steps=steps,
            guidance_scale=cfg,
            batch_size=len(input_undo_steps) * num_sets,
            generator=rng,
            prompt_embeds=conds,
            negative_prompt_embeds=unconds,
            cross_attention_kwargs={
                "concat_conds": concat_conds,
                "coded_conds": fs,
            },
            same_noise_in_batch=False,
            progress_tqdm=functools.partial(
                progress.tqdm, desc="Generating Key Frames"
            ),
        ).to(vae.dtype)
        / vae.config.scaling_factor
    )
    torch.cuda.empty_cache()

    pixels = torch.concat(
        [vae.decode(latent.unsqueeze(0)).sample for latent in latents]
    )
    pixels = pytorch2numpy(pixels)
    pixels_with_lpips = []
    lineart_pils = [Image.fromarray(lineart) for lineart in linearts]
    for pixel in pixels:
        pixel_pil = Image.fromarray(pixel)
        pixels_with_lpips.append(
            (
                sum(
                    [
                        lpips_difference(lineart_pil, pixel_pil)
                        for lineart_pil in lineart_pils
                    ]
                ),
                pixel,
            )
        )
    pixels = np.stack(
        [i[1] for i in sorted(pixels_with_lpips, key=lambda x: x[0])], axis=0
    )
    torch.cuda.empty_cache()

    return pixels, np.stack(linearts)


block = gr.Blocks().queue()
with block:
    gr.Markdown("# Sketch/Lineart extractor")

    with gr.Row():
        with gr.Column():
            input_fg = gr.Image(
                sources=["upload"], type="numpy", label="Image", height=384
            )
            with gr.Row():
                with gr.Column(scale=5):
                    prompt = gr.Textbox(label="Output Prompt", interactive=True)
                    n_prompt = gr.Textbox(
                        label="Negative Prompt",
                        value="lowres, worst quality, bad anatomy, bad hands, text, extra digit, fewer digits, cropped, low quality, jpeg artifacts, signature, watermark, username",
                    )
                    input_undo_steps = gr.Dropdown(
                        label="Operation Steps",
                        value=[900, 925, 950, 975],
                        choices=list(range(0, 1000, 5)),
                        multiselect=True,
                    )
                    num_sets = gr.Slider(
                        label="Num Sets", minimum=1, maximum=10, value=3, step=1
                    )
                with gr.Column(scale=2, min_width=160):
                    token_counter = gr.Textbox(
                        label="Tokens Count", lines=1, interactive=False
                    )
                    recaption_button = gr.Button(value="Tagging", interactive=True)
                    seed = gr.Slider(
                        label="Seed", minimum=0, maximum=50000, step=1, value=37462
                    )
                    image_width = gr.Slider(
                        label="Target size",
                        minimum=512,
                        maximum=1024,
                        value=768,
                        step=32,
                    )
                    steps = gr.Slider(
                        label="Steps", minimum=1, maximum=32, value=16, step=1
                    )
                    cfg = gr.Slider(
                        label="CFG Scale", minimum=1.0, maximum=16, value=5, step=0.05
                    )

        with gr.Column():
            key_gen_button = gr.Button(value="Generate Sketch", interactive=False)
            gr.Markdown("#### Sketch Outputs")
            result_gallery = gr.Gallery(
                height=384, object_fit="contain", label="Sketch Outputs", columns=4
            )
            gr.Markdown("#### Line Art Outputs")
            lineart_result = gr.Gallery(
                height=384,
                object_fit="contain",
                label="LineArt outputs",
            )

    input_fg.change(
        lambda x: [
            *(interrogator_process(x) if x is not None else ("", "")),
            gr.update(interactive=True),
        ],
        inputs=[input_fg],
        outputs=[prompt, token_counter, key_gen_button],
    )
    recaption_button.click(
        lambda x: [
            *(interrogator_process(x) if x is not None else ("", "")),
            gr.update(interactive=True),
        ],
        inputs=[input_fg],
        outputs=[prompt, token_counter, key_gen_button],
    )
    prompt.change(
        lambda x: len(tokenizer.tokenize(x)), inputs=[prompt], outputs=[token_counter]
    )

    key_gen_button.click(
        fn=process,
        inputs=[
            input_fg,
            prompt,
            input_undo_steps,
            image_width,
            seed,
            steps,
            n_prompt,
            cfg,
            num_sets,
        ],
        outputs=[result_gallery, lineart_result],
    ).then(
        lambda: gr.update(interactive=True),
        outputs=[key_gen_button],
    )

block.queue().launch()