Spaces:
Running
Running
import os | |
import json | |
import gradio as gr | |
from datetime import datetime | |
from huggingface_hub import InferenceClient | |
# Constants | |
DEFAULT_MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.1" | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
LOG_FILE = "chat_log.json" | |
def chat_with_model(system_prompt, user_message, max_tokens=500, model_id=""): | |
""" | |
Generate a chat completion using the specified or default Mistral model. | |
Args: | |
system_prompt (str): The system prompt to set the context. | |
user_message (str): The user's input message. | |
max_tokens (int): Maximum number of tokens to generate. | |
model_id (str): The model ID to use. If empty, uses the default model. | |
Returns: | |
str: The model's response. | |
""" | |
model_id = model_id.strip() if model_id else DEFAULT_MODEL_ID | |
client = InferenceClient(model_id, token=HF_TOKEN) | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": user_message} | |
] | |
response = "" | |
try: | |
for message in client.chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=True | |
): | |
response += message.choices[0].delta.content or "" | |
except Exception as e: | |
response = f"Error: {str(e)}" | |
# Log the input and output | |
log_chat(system_prompt, user_message, response, max_tokens, model_id) | |
return response | |
def log_chat(system_prompt, user_message, response, max_tokens, model_id): | |
""" | |
Log the chat details to a JSON file. | |
""" | |
log_entry = { | |
"timestamp": datetime.now().isoformat(), | |
"system_prompt": system_prompt, | |
"user_message": user_message, | |
"response": response, | |
"max_tokens": max_tokens, | |
"model_id": model_id | |
} | |
try: | |
# Read existing log file if it exists | |
if os.path.exists(LOG_FILE): | |
with open(LOG_FILE, 'r') as f: | |
log_data = json.load(f) | |
else: | |
log_data = [] | |
# Append new entry | |
log_data.append(log_entry) | |
# Write updated log back to file | |
with open(LOG_FILE, 'w') as f: | |
json.dump(log_data, f, indent=2) | |
except Exception as e: | |
print(f"Error logging chat: {str(e)}") | |
def create_gradio_interface(): | |
"""Create and configure the Gradio interface.""" | |
return gr.Interface( | |
fn=chat_with_model, | |
inputs=[ | |
gr.Textbox(label="System Prompt", placeholder="Enter the system prompt here..."), | |
gr.Textbox(label="User Message", placeholder="Ask a question..."), | |
gr.Slider(minimum=50, maximum=1000, value=500, step=50, label="Max Tokens"), | |
gr.Textbox(label="Model ID", placeholder=f"Enter model ID (default: {DEFAULT_MODEL_ID})") | |
], | |
outputs=gr.Textbox(label="Response"), | |
title="Mistral Chatbot", | |
description="Chat with Mistral model using your own system prompts and choose your model.", | |
examples=[ | |
["You are a helpful AI assistant.", "What is the capital of France?", 500, ""], | |
["You are an expert in Python programming.", "Explain list comprehensions.", 500, ""] | |
] | |
) | |
if __name__ == "__main__": | |
iface = create_gradio_interface() | |
iface.launch(show_api=True, share=False) |