Spaces:
Runtime error
Runtime error
Jyotiyadav
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,91 +5,70 @@ import torchvision
|
|
5 |
from transformers import pipeline
|
6 |
auth_token = os.environ.get("HUGGING_FACE_HUB_TOKEN")
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
# Initialize the pipeline
|
11 |
-
pipe = pipeline(
|
12 |
-
"text-generation",
|
13 |
-
model=model,
|
14 |
-
tokenizer = model,
|
15 |
-
torch_dtype=torch.bfloat16,
|
16 |
-
device_map="auto"
|
17 |
-
)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
* incoterms: Choose available options: EXW, FCA, FAS, FOB, CFR, CIF, CPT, CIP, DAP, DPU, DDP.
|
43 |
-
|
44 |
-
For attributes with multiple values, such as measures, volume, weight, package_type, and quantity, provide each value separately in a JSON format.
|
45 |
-
|
46 |
-
### Input:
|
47 |
-
```{input_text}```
|
48 |
-
|
49 |
-
### Response:
|
50 |
-
"""
|
51 |
-
|
52 |
-
# Generate the result
|
53 |
-
result = pipe(
|
54 |
-
f"{prompt}",
|
55 |
-
do_sample=True,
|
56 |
-
max_new_tokens=max_new_tokens,
|
57 |
-
temperature=temperature,
|
58 |
-
top_k=top_k,
|
59 |
-
top_p=top_p,
|
60 |
-
num_return_sequences=1,
|
61 |
-
)
|
62 |
|
63 |
-
# Return the generated text
|
64 |
-
return result[0]['generated_text']
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
#"DataIntelligenceTeam/mistral_7B_NER"]
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
gr.inputs.Textbox(label="Input Text"),
|
76 |
-
gr.inputs.Number(label="Max New Tokens", default=2000),
|
77 |
-
gr.inputs.Slider(label="Temperature", minimum=0.0, maximum=1.0, default=0.1, step=0.01),
|
78 |
-
gr.inputs.Number(label="Top K", default=0),
|
79 |
-
gr.inputs.Number(label="Top P", default=0),
|
80 |
-
gr.inputs.Dropdown(label="Model", choices=model_options, default=model_options[0])
|
81 |
-
]
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
inputs=
|
87 |
-
outputs
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
debug=True
|
92 |
-
)
|
93 |
|
94 |
-
#
|
|
|
|
|
|
|
|
|
|
|
95 |
iface.launch()
|
|
|
5 |
from transformers import pipeline
|
6 |
auth_token = os.environ.get("HUGGING_FACE_HUB_TOKEN")
|
7 |
|
8 |
+
import gradio as gr
|
9 |
+
from unsloth import FastLanguageModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
instruction = """
|
12 |
+
From the given email, extract the following key values. The keys are explained below:
|
13 |
+
* pickup_location: Street address of the origin location of goods.
|
14 |
+
* pickup_cap: Postal code or ZIP code of the pickup location.
|
15 |
+
* pickup_port: Port of pickup, often used in international shipping.
|
16 |
+
* pickup_state: Only Country of pickup location.
|
17 |
+
* delivery_location: Street address of the destination location of goods.
|
18 |
+
* delivery_cap: Postal code or ZIP code of delivery location.
|
19 |
+
* delivery_port: Port of delivery, similar to pickup port.
|
20 |
+
* delivery_state: State or region of delivery location.
|
21 |
+
* total_quantity: Overall quantity of shipped items (e.g., pieces, boxes). Calculate the total_quantity by summing the quantity of all packages.
|
22 |
+
* total_weight: Total weight of the shipment (e.g., kg, lbs). Calculate the total_weight by summing the weights of all packages.
|
23 |
+
* total_volume: Total volume of the shipment (e.g., cubic meters, cubic feet). Calculate the total_volume by summing the volumes of all packages.
|
24 |
+
* quantity: Individual Quantity of a specific item being shipped.
|
25 |
+
* package_type: Individual Type of packaging used (e.g., pallets, cartons).
|
26 |
+
* weight: Individual Weight of a specific package.
|
27 |
+
* measures: Individual Dimensions or measurements of a package.
|
28 |
+
* stackable: Indicates whether the shipment is stackable (True or False).
|
29 |
+
* volume: Individual Volume of a specific package.
|
30 |
+
* commodity: Type of goods or commodities being shipped.
|
31 |
+
* company: Name of the email sending company, also the shipping company or carrier.
|
32 |
+
* incoterms: Choose available options: EXW, FCA, FAS, FOB, CFR, CIF, CPT, CIP, DAP, DPU, DDP.
|
33 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
|
|
35 |
|
36 |
+
# Define the function for generating output based on input
|
37 |
+
def generate_output(input_text):
|
38 |
+
# Prompt for the instruction
|
39 |
+
|
40 |
+
output = ""
|
41 |
+
# Initialize the FastLanguageModel
|
42 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
43 |
+
model_name = "sxandie/llama_3_8b_4bitQ",
|
44 |
+
max_seq_length = 2048,
|
45 |
+
dtype = None,
|
46 |
+
load_in_4bit = True,
|
47 |
+
)
|
48 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
49 |
|
50 |
+
alpaca_prompt = f"""
|
51 |
+
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
52 |
|
53 |
+
### Instruction:
|
54 |
+
{instruction}
|
|
|
55 |
|
56 |
+
### Input:
|
57 |
+
{input_text}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
### Response:
|
60 |
+
"""
|
61 |
+
# Tokenize the input text
|
62 |
+
inputs = tokenizer([alpaca_prompt], return_tensors="pt").to("cuda")
|
63 |
+
# Generate outputs
|
64 |
+
outputs = model.generate(**inputs, max_new_tokens=2048, use_cache=True)
|
65 |
+
output = tokenizer.batch_decode(outputs)
|
66 |
+
return output
|
|
|
|
|
67 |
|
68 |
+
# Create Gradio interface
|
69 |
+
iface = gr.Interface(fn=generate_output,
|
70 |
+
inputs="text",
|
71 |
+
outputs="text",
|
72 |
+
title="Email Information Extraction",
|
73 |
+
description="Extract key information from the provided email.")
|
74 |
iface.launch()
|