Jyotiyadav commited on
Commit
78e5231
·
verified ·
1 Parent(s): beab6ff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -20
app.py CHANGED
@@ -5,15 +5,16 @@ import torchvision
5
  from transformers import pipeline
6
  auth_token = os.environ.get("HUGGING_FACE_HUB_TOKEN")
7
 
8
- # Initialize the pipeline
9
- pipe = pipeline(
10
- "text-generation",
11
- model="Jyotiyadav/mistral_7B_NER",
12
- torch_dtype=torch.bfloat16,
13
- device_map="auto")
14
-
15
  # Function to generate output based on input
16
- def generate_output(input_text):
 
 
 
 
 
 
 
 
17
  # Prompt for extracting information
18
  prompt = f'''
19
  Your task is to extract the information corresponding to the provided labels from the below given email.
@@ -52,16 +53,17 @@ def generate_output(input_text):
52
  result = pipe(
53
  f"<s>[INST] {prompt} [/INST]",
54
  do_sample=True,
55
- max_new_tokens=32000,
56
- temperature=0.1,
57
- top_k=0,
58
- top_p=0,
59
  num_return_sequences=1,
60
  )
61
 
62
  # Return the generated text
63
  return result[0]['generated_text']
64
 
 
65
  examples = [
66
  '''
67
  COTIZACION FLETE MARITIMO OC 4500325343 Buongiorno ;
@@ -89,13 +91,26 @@ Del. Alvaro Obregon ;
89
 
90
 
91
 
 
 
 
 
 
 
 
 
 
92
 
93
  # Create a Gradio interface
94
- iface = gr.Interface(fn=generate_output,
95
- inputs=["text"],
96
- outputs="text",
97
- title="Information Extraction with Mistral-7B",
98
- examples=examples,
99
- debug=True,
100
- description="Generate a Information Extraction with OpenLLM.")
101
- iface.launch()
 
 
 
 
 
5
  from transformers import pipeline
6
  auth_token = os.environ.get("HUGGING_FACE_HUB_TOKEN")
7
 
 
 
 
 
 
 
 
8
  # Function to generate output based on input
9
+ def generate_output(input_text, max_new_tokens, temperature, top_k, top_p, model):
10
+ # Initialize the pipeline
11
+ pipe = pipeline(
12
+ "text-generation",
13
+ model=model,
14
+ torch_dtype=torch.bfloat16,
15
+ device_map="auto"
16
+ )
17
+
18
  # Prompt for extracting information
19
  prompt = f'''
20
  Your task is to extract the information corresponding to the provided labels from the below given email.
 
53
  result = pipe(
54
  f"<s>[INST] {prompt} [/INST]",
55
  do_sample=True,
56
+ max_new_tokens=max_new_tokens,
57
+ temperature=temperature,
58
+ top_k=top_k,
59
+ top_p=top_p,
60
  num_return_sequences=1,
61
  )
62
 
63
  # Return the generated text
64
  return result[0]['generated_text']
65
 
66
+
67
  examples = [
68
  '''
69
  COTIZACION FLETE MARITIMO OC 4500325343 Buongiorno ;
 
91
 
92
 
93
 
94
+ # Create Gradio inputs
95
+ inputs = [
96
+ gr.inputs.Textbox(label="Input Text"),
97
+ gr.inputs.Number(label="Max New Tokens", default=32000),
98
+ gr.inputs.Slider(label="Temperature", minimum=0.0, maximum=1.0, default=0.1, step=0.01),
99
+ gr.inputs.Number(label="Top K", default=0),
100
+ gr.inputs.Number(label="Top P", default=0),
101
+ gr.inputs.Textbox(label="Model", default="Jyotiyadav/mistral_7B_NER")
102
+ ]
103
 
104
  # Create a Gradio interface
105
+ iface = gr.Interface(
106
+ fn=generate_output,
107
+ inputs=inputs,
108
+ outputs="text",
109
+ #examples=examples,
110
+ title="Information Extraction with Mistral-7B",
111
+ description="Generate Information Extraction with OpenLLM.",
112
+ debug=True
113
+ )
114
+
115
+ # Launch the interface
116
+ iface.launch()