import json import os from typing import List import datasets _HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co.") _DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dialogue Data." _CITATION = """\ @misc{UltraChat, author = {Ding, Ning and Chen, Yulin and Xu, Bokai and Hu, Shengding and Qin, Yujia and Liu, Zhiyuan and Sun, Maosong and Zhou, Bowen}, title = {UltraChat: A Large-scale Auto-generated Multi-round Dialogue Data}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\url{https://github.com/thunlp/ultrachat}}, } """ _HOMEPAGE = "{}/datasets/stingning/ultrachat".format(_HF_ENDPOINT) _LICENSE = "cc-by-nc-4.0" _BASE_DATA_URL = "{}/datasets/stingning/ultrachat/resolve/main/train_{{idx}}.jsonl".format(_HF_ENDPOINT) class UltraChat(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.0.0") def _info(self): features = datasets.Features( {"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]} ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION ) def _split_generators(self, dl_manager: datasets.DownloadManager): file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(10)] # multiple shards return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": file_paths})] def _generate_examples(self, filepaths: List[str]): for filepath in filepaths: with open(filepath, "r", encoding="utf-8") as f: for row in f: try: data = json.loads(row) except Exception: continue key: int = data["id"] content: List[str] = data["data"] if len(content) % 2 == 1: content.pop(-1) if len(content) < 2: continue conversations = [ {"from": "human" if i % 2 == 0 else "gpt", "value": content[i]} for i in range(len(content)) ] yield key, {"conversations": conversations}