import streamlit as st import transformers import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Justin-J/finetuned_sentiment_modell") model = AutoModelForSequenceClassification.from_pretrained("Justin-J/finetuned_sentiment_modell") # Define the function for sentiment analysis @st.cache_resource def predict_sentiment(text): # Load the pipeline. pipeline = transformers.pipeline("sentiment-analysis") # Predict the sentiment. prediction = pipeline(text) sentiment = prediction[0]["label"] score = prediction[0]["score"] return sentiment, score # Setting the page configurations st.set_page_config( page_title="Sentiment Analysis App", page_icon=":smile:", layout="wide", initial_sidebar_state="auto", ) # Add description and title st.write(""" # How Positive or Negative is your Text? Enter some text and we'll tell you if it has a positive, negative, or neutral sentiment! """) # Add image image = st.image("https://user-images.githubusercontent.com/115732734/271723332-6c824e95-5e2f-48ec-af1c-b66ac7db1d7a.jpeg", width=550) image = st.image("https://user-images.githubusercontent.com/115732734/271723345-50f27ca9-94ee-4e7c-ad3b-2b10f27d31bb.jpeg", width=550) image = st.image("https://user-images.githubusercontent.com/115732734/271723351-3677394d-1cd3-4df8-8bec-616fa6bd3b2c.png", width=550) # Add Image Tags st.markdown( """