Spaces:
Sleeping
Sleeping
A backup of current application file.
Browse files- app.py.bak +76 -0
app.py.bak
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
#from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
4 |
+
from transformers import AutoProcessor, AutoModelForDocumentQuestionAnswering
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
#client = InferenceClient("models/microsoft/trocr-base-handwritten")
|
8 |
+
processor = AutoProcessor.from_pretrained("Sharka/CIVQA_LayoutLMv2_EasyOCR")
|
9 |
+
model = AutoModelForDocumentQuestionAnswering.from_pretrained("Sharka/CIVQA_LayoutLMv2_EasyOCR")
|
10 |
+
|
11 |
+
def sepia(input_img):
|
12 |
+
sepia_filter = np.array([
|
13 |
+
[0.393, 0.769, 0.189],
|
14 |
+
[0.349, 0.686, 0.168],
|
15 |
+
[0.272, 0.534, 0.131]
|
16 |
+
])
|
17 |
+
sepia_img = input_img.dot(sepia_filter.T)
|
18 |
+
sepia_img /= sepia_img.max()
|
19 |
+
sepia_values = repr(sepia_img)
|
20 |
+
return sepia_img, sepia_values
|
21 |
+
|
22 |
+
|
23 |
+
## https://www.gradio.app/docs/gradio/blocks
|
24 |
+
## required positional arguments: 'inputs' and 'outputs'
|
25 |
+
def process_image(image):
|
26 |
+
try:
|
27 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
28 |
+
|
29 |
+
generated_ids = model.generate(pixel_values)
|
30 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
31 |
+
return generated_text
|
32 |
+
except Exception as e:
|
33 |
+
return f"Error: {str(e)}"
|
34 |
+
|
35 |
+
def additional_input(text):
|
36 |
+
return f"Additional input received: {text}"
|
37 |
+
|
38 |
+
sepia_interface = gr.Interface(sepia, gr.Image(), "image")
|
39 |
+
|
40 |
+
with gr.Blocks() as generated_output:
|
41 |
+
with gr.Column():
|
42 |
+
sepia_values_text=gr.Textbox(label="Sepia Values")
|
43 |
+
output_img = gr.Image(label="Output Image")
|
44 |
+
gr.Interface(fn=sepia,
|
45 |
+
inputs=gr.Image(
|
46 |
+
#this makes the camera stream live
|
47 |
+
sources=["webcam"],
|
48 |
+
streaming=True
|
49 |
+
),
|
50 |
+
outputs=[output_img, sepia_values_text],
|
51 |
+
live=True,
|
52 |
+
show_progress="full")
|
53 |
+
with gr.Row():
|
54 |
+
output_img.change(
|
55 |
+
fn=process_image,
|
56 |
+
inputs=output_img,
|
57 |
+
outputs=gr.Textbox(label="Recognized Text"),
|
58 |
+
show_progress="full")
|
59 |
+
#with gr.Blocks() as generated_output:
|
60 |
+
# inp = gr.Interface(sepia, gr.Image(), "image")
|
61 |
+
# out = gr.Textbox()
|
62 |
+
|
63 |
+
|
64 |
+
#demo = gr.TabbedInterface([sepia_interface, generated_output], ["RGB Sepia Filter", "Handwritten to Text"])
|
65 |
+
|
66 |
+
#with gr.Blocks() as demo:
|
67 |
+
# with gr.Row():
|
68 |
+
# input_img = gr.Image(label="Input Image")
|
69 |
+
# submit_button = gr.Button("Submit")
|
70 |
+
# output_img = gr.Image(label="Output Image")
|
71 |
+
# sepia_values_text = gr.Textbox(label="Sepia Values")
|
72 |
+
|
73 |
+
# submit_button.click(sepia, inputs=input_img, outputs=[output_img, sepia_values_text])
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
generated_output.launch()
|