Spaces:
Runtime error
Runtime error
Upload convert_ytvis2tao.py
Browse files
annotations/convert_ytvis2tao.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import argparse
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
def parse_args():
|
8 |
+
parser = argparse.ArgumentParser("D2 model converter")
|
9 |
+
|
10 |
+
parser.add_argument("--results", default="", type=str, help="Path to the GLEE output dir ")
|
11 |
+
parser.add_argument("--refer", default="", type=str, help="Path to the BURST annotation val dir")
|
12 |
+
|
13 |
+
return parser.parse_args()
|
14 |
+
|
15 |
+
|
16 |
+
def main():
|
17 |
+
args = parse_args()
|
18 |
+
|
19 |
+
ori_anno = json.load(open(args.results,'rb'))
|
20 |
+
|
21 |
+
reference_anno = json.load(open(args.refer,'rb'))
|
22 |
+
|
23 |
+
|
24 |
+
num_tracks = 0
|
25 |
+
num_miss_video = 0
|
26 |
+
|
27 |
+
|
28 |
+
id_mapping = {}
|
29 |
+
|
30 |
+
for i, cate_info in enumerate(reference_anno['categories']):
|
31 |
+
new_id = i
|
32 |
+
old_id = cate_info['id']
|
33 |
+
id_mapping.update({new_id:old_id})
|
34 |
+
|
35 |
+
|
36 |
+
ref_sequences_dict = {}
|
37 |
+
for ref in reference_anno['sequences']:
|
38 |
+
ref_sequences_dict[ref['id']] = ref
|
39 |
+
|
40 |
+
|
41 |
+
# ids = [v['category_id'] for v in ori_anno]
|
42 |
+
|
43 |
+
sequences_dict = {}
|
44 |
+
|
45 |
+
for seg in ori_anno:
|
46 |
+
vid = seg['video_id']
|
47 |
+
if vid not in sequences_dict.keys():
|
48 |
+
# import pdb;pdb.set_trace()
|
49 |
+
sequences_dict[vid] = {
|
50 |
+
'id': vid,
|
51 |
+
'width': ref_sequences_dict[vid]['width'],
|
52 |
+
'height': ref_sequences_dict[vid]['height'],
|
53 |
+
'seq_name': ref_sequences_dict[vid]['seq_name'],
|
54 |
+
'dataset': ref_sequences_dict[vid]['dataset'],
|
55 |
+
'annotated_image_paths': ref_sequences_dict[vid]['annotated_image_paths'],
|
56 |
+
'fps': ref_sequences_dict[vid]['fps'],
|
57 |
+
'segmentations': [{} for i in range(len(seg['segmentations']))],
|
58 |
+
'track_category_ids': {},
|
59 |
+
}
|
60 |
+
track_id = str(len(sequences_dict[vid]['track_category_ids']) + 1)
|
61 |
+
|
62 |
+
for frame, rles in enumerate(seg['segmentations']):
|
63 |
+
sequences_dict[vid]['segmentations'][frame][track_id] = {'rle': rles['counts'], 'score':seg['score']}
|
64 |
+
# import pdb;pdb.set_trace()
|
65 |
+
sequences_dict[vid]['track_category_ids'][track_id] = id_mapping[seg['category_id']]
|
66 |
+
|
67 |
+
|
68 |
+
results = {'sequences':[]}
|
69 |
+
for k,v in sequences_dict.items():
|
70 |
+
results['sequences'].append(v)
|
71 |
+
|
72 |
+
|
73 |
+
with open('converted_tao_results.json', 'w') as f:
|
74 |
+
json.dump(results, f)
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
main()
|
80 |
+
|
81 |
+
|
82 |
+
|