File size: 12,410 Bytes
2aac0e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import math
import numpy as np
from scipy import interpolate
import torch
import torch.nn as nn
import torch.nn.functional as F

__all__ = [
    "window_partition",
    "window_unpartition",
    "add_decomposed_rel_pos",
    "get_abs_pos",
    "PatchEmbed",
    "VisionRotaryEmbeddingFast",
]


def window_partition(x, window_size):
    """
    Partition into non-overlapping windows with padding if needed.
    Args:
        x (tensor): input tokens with [B, H, W, C].
        window_size (int): window size.

    Returns:
        windows: windows after partition with [B * num_windows, window_size, window_size, C].
        (Hp, Wp): padded height and width before partition
    """
    B, H, W, C = x.shape

    pad_h = (window_size - H % window_size) % window_size
    pad_w = (window_size - W % window_size) % window_size
    if pad_h > 0 or pad_w > 0:
        x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
    Hp, Wp = H + pad_h, W + pad_w

    x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows, (Hp, Wp)


def window_unpartition(windows, window_size, pad_hw, hw):
    """
    Window unpartition into original sequences and removing padding.
    Args:
        x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
        window_size (int): window size.
        pad_hw (Tuple): padded height and width (Hp, Wp).
        hw (Tuple): original height and width (H, W) before padding.

    Returns:
        x: unpartitioned sequences with [B, H, W, C].
    """
    Hp, Wp = pad_hw
    H, W = hw
    B = windows.shape[0] // (Hp * Wp // window_size // window_size)
    x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)

    if Hp > H or Wp > W:
        x = x[:, :H, :W, :].contiguous()
    return x


def get_rel_pos(q_size, k_size, rel_pos):
    """
    Get relative positional embeddings according to the relative positions of
        query and key sizes.
    Args:
        q_size (int): size of query q.
        k_size (int): size of key k.
        rel_pos (Tensor): relative position embeddings (L, C).

    Returns:
        Extracted positional embeddings according to relative positions.
    """
    max_rel_dist = int(2 * max(q_size, k_size) - 1)
    use_log_interpolation = True

    # Interpolate rel pos if needed.
    if rel_pos.shape[0] != max_rel_dist:
        if not use_log_interpolation:
            # Interpolate rel pos.
            rel_pos_resized = F.interpolate(
                rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
                size=max_rel_dist,
                mode="linear",
            )
            rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
        else:
            src_size = rel_pos.shape[0]
            dst_size = max_rel_dist

            # q = 1.13492
            q = 1.0903078
            dis = []

            cur = 1
            for i in range(src_size // 2):
                dis.append(cur)
                cur += q ** (i + 1)

            r_ids = [-_ for _ in reversed(dis)]
            x = r_ids + [0] + dis
            t = dst_size // 2.0
            dx = np.arange(-t, t + 0.1, 1.0)
            # print("x = %s" % str(x))
            # print("dx = %s" % str(dx))
            all_rel_pos_bias = []
            for i in range(rel_pos.shape[1]):
                z = rel_pos[:, i].view(src_size).cpu().float().numpy()
                f = interpolate.interp1d(x, z, kind='cubic', fill_value="extrapolate")
                all_rel_pos_bias.append(
                    torch.Tensor(f(dx)).contiguous().view(-1, 1).to(rel_pos.device))
            rel_pos_resized = torch.cat(all_rel_pos_bias, dim=-1)
    else:
        rel_pos_resized = rel_pos

    # Scale the coords with short length if shapes for q and k are different.
    q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
    k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
    relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)

    return rel_pos_resized[relative_coords.long()]


def add_decomposed_rel_pos(attn, q, rel_pos_h, rel_pos_w, q_size, k_size):
    """
    Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
    https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py   # noqa B950
    Args:
        attn (Tensor): attention map.
        q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
        rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
        rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
        q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
        k_size (Tuple): spatial sequence size of key k with (k_h, k_w).

    Returns:
        attn (Tensor): attention map with added relative positional embeddings.
    """
    q_h, q_w = q_size
    k_h, k_w = k_size
    Rh = get_rel_pos(q_h, k_h, rel_pos_h)
    Rw = get_rel_pos(q_w, k_w, rel_pos_w)

    B, _, dim = q.shape
    r_q = q.reshape(B, q_h, q_w, dim)
    rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
    rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)

    attn = (
        attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
    ).view(B, q_h * q_w, k_h * k_w)

    return attn


def get_abs_pos(abs_pos, has_cls_token, hw):
    """
    Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token
        dimension for the original embeddings.
    Args:
        abs_pos (Tensor): absolute positional embeddings with (1, num_position, C).
        has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token.
        hw (Tuple): size of input image tokens.

    Returns:
        Absolute positional embeddings after processing with shape (1, H, W, C)
    """
    h, w = hw
    if has_cls_token:
        abs_pos = abs_pos[:, 1:]
    xy_num = abs_pos.shape[1]
    size = int(math.sqrt(xy_num))
    assert size * size == xy_num

    if size != h or size != w:
        new_abs_pos = F.interpolate(
            abs_pos.reshape(1, size, size, -1).permute(0, 3, 1, 2),
            size=(h, w),
            mode="bicubic",
            align_corners=False,
        )

        return new_abs_pos.permute(0, 2, 3, 1)
    else:
        return abs_pos.reshape(1, h, w, -1)


class PatchEmbed(nn.Module):
    """
    Image to Patch Embedding.
    """

    def __init__(
        self, kernel_size=(16, 16), stride=(16, 16), padding=(0, 0), in_chans=3, embed_dim=768
    ):
        """
        Args:
            kernel_size (Tuple): kernel size of the projection layer.
            stride (Tuple): stride of the projection layer.
            padding (Tuple): padding size of the projection layer.
            in_chans (int): Number of input image channels.
            embed_dim (int):  embed_dim (int): Patch embedding dimension.
        """
        super().__init__()

        self.proj = nn.Conv2d(
            in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
        )

    def forward(self, x):
        x = self.proj(x)
        # B C H W -> B H W C
        x = x.permute(0, 2, 3, 1)
        return x
    



from math import pi

import torch
from torch import nn

from einops import rearrange, repeat



def broadcat(tensors, dim = -1):
    num_tensors = len(tensors)
    shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
    assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
    shape_len = list(shape_lens)[0]
    dim = (dim + shape_len) if dim < 0 else dim
    dims = list(zip(*map(lambda t: list(t.shape), tensors)))
    expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
    assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
    max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
    expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
    expanded_dims.insert(dim, (dim, dims[dim]))
    expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
    tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
    return torch.cat(tensors, dim = dim)



def rotate_half(x):
    x = rearrange(x, '... (d r) -> ... d r', r = 2)
    x1, x2 = x.unbind(dim = -1)
    x = torch.stack((-x2, x1), dim = -1)
    return rearrange(x, '... d r -> ... (d r)')



class VisionRotaryEmbedding(nn.Module):
    def __init__(
        self,
        dim,
        pt_seq_len,
        ft_seq_len=None,
        custom_freqs = None,
        freqs_for = 'lang',
        theta = 10000,
        max_freq = 10,
        num_freqs = 1,
    ):
        super().__init__()
        if custom_freqs:
            freqs = custom_freqs
        elif freqs_for == 'lang':
            freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
        elif freqs_for == 'pixel':
            freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
        elif freqs_for == 'constant':
            freqs = torch.ones(num_freqs).float()
        else:
            raise ValueError(f'unknown modality {freqs_for}')

        if ft_seq_len is None: ft_seq_len = pt_seq_len
        t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len

        freqs_h = torch.einsum('..., f -> ... f', t, freqs)
        freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2)

        freqs_w = torch.einsum('..., f -> ... f', t, freqs)
        freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2)

        freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1)

        self.register_buffer("freqs_cos", freqs.cos())
        self.register_buffer("freqs_sin", freqs.sin())

        print('======== shape of rope freq', self.freqs_cos.shape, '========')

    def forward(self, t, start_index = 0):
        rot_dim = self.freqs_cos.shape[-1]
        end_index = start_index + rot_dim
        assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
        t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
        t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
        return torch.cat((t_left, t, t_right), dim = -1)




class VisionRotaryEmbeddingFast(nn.Module):
    def __init__(
        self,
        dim,
        pt_seq_len=16,
        ft_seq_len=None,
        custom_freqs = None,
        freqs_for = 'lang',
        theta = 10000,
        max_freq = 10,
        num_freqs = 1,
    ):
        super().__init__()
        if custom_freqs:
            freqs = custom_freqs
        elif freqs_for == 'lang':
            freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
        elif freqs_for == 'pixel':
            freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
        elif freqs_for == 'constant':
            freqs = torch.ones(num_freqs).float()
        else:
            raise ValueError(f'unknown modality {freqs_for}')

        if ft_seq_len is None: ft_seq_len = pt_seq_len
        t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len

        freqs = torch.einsum('..., f -> ... f', t, freqs)
        freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
        freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)

        freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
        freqs_sin = freqs.sin().view(-1, freqs.shape[-1])

        self.register_buffer("freqs_cos", freqs_cos)
        self.register_buffer("freqs_sin", freqs_sin)

        print('======== shape of rope freq', self.freqs_cos.shape, '========')

    # def forward(self, t): return  t * self.freqs_cos + rotate_half(t) * self.freqs_sin
    def forward(self, t): 
        if t.shape[2] != self.freqs_cos.shape[0]:
            t_len = t.shape[2]
            output = t * self.freqs_cos[:t_len] + rotate_half(t) * self.freqs_sin[:t_len]
        else:
            output = t * self.freqs_cos + rotate_half(t) * self.freqs_sin
        return  output