Spaces:
Runtime error
Runtime error
File size: 27,896 Bytes
2aac0e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
# --------------------------------------------------------
# InternImage
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import trunc_normal_, DropPath
from detectron2.utils.logger import setup_logger
from detectron2.modeling.backbone import Backbone
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec
from .ops_dcnv3 import modules as opsm
class to_channels_first(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 3, 1, 2)
class to_channels_last(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 2, 3, 1)
def build_norm_layer(dim,
norm_layer,
in_format='channels_last',
out_format='channels_last',
eps=1e-6):
layers = []
if norm_layer == 'BN':
if in_format == 'channels_last':
layers.append(to_channels_first())
layers.append(nn.BatchNorm2d(dim))
if out_format == 'channels_last':
layers.append(to_channels_last())
elif norm_layer == 'LN':
if in_format == 'channels_first':
layers.append(to_channels_last())
layers.append(nn.LayerNorm(dim, eps=eps))
if out_format == 'channels_first':
layers.append(to_channels_first())
else:
raise NotImplementedError(
f'build_norm_layer does not support {norm_layer}')
return nn.Sequential(*layers)
def build_act_layer(act_layer):
if act_layer == 'ReLU':
return nn.ReLU(inplace=True)
elif act_layer == 'SiLU':
return nn.SiLU(inplace=True)
elif act_layer == 'GELU':
return nn.GELU()
raise NotImplementedError(f'build_act_layer does not support {act_layer}')
class CrossAttention(nn.Module):
r""" Cross Attention Module
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads. Default: 8
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Default: False.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
attn_drop (float, optional): Dropout ratio of attention weight.
Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
attn_head_dim (int, optional): Dimension of attention head.
out_dim (int, optional): Dimension of output.
"""
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
attn_head_dim=None,
out_dim=None):
super().__init__()
if out_dim is None:
out_dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim ** -0.5
assert all_head_dim == dim
self.q = nn.Linear(dim, all_head_dim, bias=False)
self.k = nn.Linear(dim, all_head_dim, bias=False)
self.v = nn.Linear(dim, all_head_dim, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.k_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, out_dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, k=None, v=None):
B, N, C = x.shape
N_k = k.shape[1]
N_v = v.shape[1]
q_bias, k_bias, v_bias = None, None, None
if self.q_bias is not None:
q_bias = self.q_bias
k_bias = self.k_bias
v_bias = self.v_bias
q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
q = q.reshape(B, N, 1, self.num_heads,
-1).permute(2, 0, 3, 1,
4).squeeze(0) # (B, N_head, N_q, dim)
k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1,
4).squeeze(0)
v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1,
4).squeeze(0)
q = q * self.scale
attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class AttentiveBlock(nn.Module):
r"""Attentive Block
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads. Default: 8
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Default: False.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
drop (float, optional): Dropout rate. Default: 0.0.
attn_drop (float, optional): Attention dropout rate. Default: 0.0.
drop_path (float | tuple[float], optional): Stochastic depth rate.
Default: 0.0.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm.
attn_head_dim (int, optional): Dimension of attention head. Default: None.
out_dim (int, optional): Dimension of output. Default: None.
"""
def __init__(self,
dim,
num_heads,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer="LN",
attn_head_dim=None,
out_dim=None):
super().__init__()
self.norm1_q = build_norm_layer(dim, norm_layer, eps=1e-6)
self.norm1_k = build_norm_layer(dim, norm_layer, eps=1e-6)
self.norm1_v = build_norm_layer(dim, norm_layer, eps=1e-6)
self.cross_dcn = CrossAttention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
attn_head_dim=attn_head_dim,
out_dim=out_dim)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
def forward(self,
x_q,
x_kv,
pos_q,
pos_k,
bool_masked_pos,
rel_pos_bias=None):
x_q = self.norm1_q(x_q + pos_q)
x_k = self.norm1_k(x_kv + pos_k)
x_v = self.norm1_v(x_kv)
x = self.cross_dcn(x_q, k=x_k, v=x_v)
return x
class AttentionPoolingBlock(AttentiveBlock):
def forward(self, x):
x_q = x.mean(1, keepdim=True)
x_kv = x
pos_q, pos_k = 0, 0
x = super().forward(x_q, x_kv, pos_q, pos_k,
bool_masked_pos=None,
rel_pos_bias=None)
x = x.squeeze(1)
return x
class StemLayer(nn.Module):
r""" Stem layer of InternImage
Args:
in_chans (int): number of input channels
out_chans (int): number of output channels
act_layer (str): activation layer
norm_layer (str): normalization layer
"""
def __init__(self,
in_chans=3,
out_chans=96,
act_layer='GELU',
norm_layer='BN'):
super().__init__()
self.conv1 = nn.Conv2d(in_chans,
out_chans // 2,
kernel_size=3,
stride=2,
padding=1)
self.norm1 = build_norm_layer(out_chans // 2, norm_layer,
'channels_first', 'channels_first')
self.act = build_act_layer(act_layer)
self.conv2 = nn.Conv2d(out_chans // 2,
out_chans,
kernel_size=3,
stride=2,
padding=1)
self.norm2 = build_norm_layer(out_chans, norm_layer, 'channels_first',
'channels_last')
def forward(self, x):
x = self.conv1(x)
x = self.norm1(x)
x = self.act(x)
x = self.conv2(x)
x = self.norm2(x)
return x
class DownsampleLayer(nn.Module):
r""" Downsample layer of InternImage
Args:
channels (int): number of input channels
norm_layer (str): normalization layer
"""
def __init__(self, channels, norm_layer='LN'):
super().__init__()
self.conv = nn.Conv2d(channels,
2 * channels,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.norm = build_norm_layer(2 * channels, norm_layer,
'channels_first', 'channels_last')
def forward(self, x):
x = self.conv(x.permute(0, 3, 1, 2))
x = self.norm(x)
return x
class MLPLayer(nn.Module):
r""" MLP layer of InternImage
Args:
in_features (int): number of input features
hidden_features (int): number of hidden features
out_features (int): number of output features
act_layer (str): activation layer
drop (float): dropout rate
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer='GELU',
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = build_act_layer(act_layer)
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class InternImageLayer(nn.Module):
r""" Basic layer of InternImage
Args:
core_op (nn.Module): core operation of InternImage
channels (int): number of input channels
groups (list): Groups of each block.
mlp_ratio (float): ratio of mlp hidden features to input channels
drop (float): dropout rate
drop_path (float): drop path rate
act_layer (str): activation layer
norm_layer (str): normalization layer
post_norm (bool): whether to use post normalization
layer_scale (float): layer scale
offset_scale (float): offset scale
with_cp (bool): whether to use checkpoint
"""
def __init__(self,
core_op,
channels,
groups,
mlp_ratio=4.,
drop=0.,
drop_path=0.,
act_layer='GELU',
norm_layer='LN',
post_norm=False,
layer_scale=None,
offset_scale=1.0,
with_cp=False,
dw_kernel_size=None, # for InternImage-H/G
res_post_norm=False, # for InternImage-H/G
center_feature_scale=False): # for InternImage-H/G
super().__init__()
self.channels = channels
self.groups = groups
self.mlp_ratio = mlp_ratio
self.with_cp = with_cp
self.norm1 = build_norm_layer(channels, 'LN')
self.post_norm = post_norm
self.dcn = core_op(
channels=channels,
kernel_size=3,
stride=1,
pad=1,
dilation=1,
group=groups,
offset_scale=offset_scale,
act_layer=act_layer,
norm_layer=norm_layer,
dw_kernel_size=dw_kernel_size, # for InternImage-H/G
center_feature_scale=center_feature_scale) # for InternImage-H/G
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
self.norm2 = build_norm_layer(channels, 'LN')
self.mlp = MLPLayer(in_features=channels,
hidden_features=int(channels * mlp_ratio),
act_layer=act_layer,
drop=drop)
self.layer_scale = layer_scale is not None
if self.layer_scale:
self.gamma1 = nn.Parameter(layer_scale * torch.ones(channels),
requires_grad=True)
self.gamma2 = nn.Parameter(layer_scale * torch.ones(channels),
requires_grad=True)
self.res_post_norm = res_post_norm
if res_post_norm:
self.res_post_norm1 = build_norm_layer(channels, 'LN')
self.res_post_norm2 = build_norm_layer(channels, 'LN')
def forward(self, x):
def _inner_forward(x):
if not self.layer_scale:
if self.post_norm:
x = x + self.drop_path(self.norm1(self.dcn(x)))
x = x + self.drop_path(self.norm2(self.mlp(x)))
elif self.res_post_norm: # for InternImage-H/G
x = x + self.drop_path(self.res_post_norm1(self.dcn(self.norm1(x))))
x = x + self.drop_path(self.res_post_norm2(self.mlp(self.norm2(x))))
else:
x = x + self.drop_path(self.dcn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
if self.post_norm:
x = x + self.drop_path(self.gamma1 * self.norm1(self.dcn(x)))
x = x + self.drop_path(self.gamma2 * self.norm2(self.mlp(x)))
else:
x = x + self.drop_path(self.gamma1 * self.dcn(self.norm1(x)))
x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x)))
return x
if self.with_cp and x.requires_grad:
x = checkpoint.checkpoint(_inner_forward, x)
else:
x = _inner_forward(x)
return x
class InternImageBlock(nn.Module):
r""" Block of InternImage
Args:
core_op (nn.Module): core operation of InternImage
channels (int): number of input channels
depths (list): Depth of each block.
groups (list): Groups of each block.
mlp_ratio (float): ratio of mlp hidden features to input channels
drop (float): dropout rate
drop_path (float): drop path rate
act_layer (str): activation layer
norm_layer (str): normalization layer
post_norm (bool): whether to use post normalization
layer_scale (float): layer scale
offset_scale (float): offset scale
with_cp (bool): whether to use checkpoint
"""
def __init__(self,
core_op,
channels,
depth,
groups,
downsample=True,
mlp_ratio=4.,
drop=0.,
drop_path=0.,
act_layer='GELU',
norm_layer='LN',
post_norm=False,
offset_scale=1.0,
layer_scale=None,
with_cp=False,
dw_kernel_size=None, # for InternImage-H/G
post_norm_block_ids=None, # for InternImage-H/G
res_post_norm=False, # for InternImage-H/G
center_feature_scale=False): # for InternImage-H/G
super().__init__()
self.channels = channels
self.depth = depth
self.post_norm = post_norm
self.center_feature_scale = center_feature_scale
self.blocks = nn.ModuleList([
InternImageLayer(
core_op=core_op,
channels=channels,
groups=groups,
mlp_ratio=mlp_ratio,
drop=drop,
drop_path=drop_path[i] if isinstance(
drop_path, list) else drop_path,
act_layer=act_layer,
norm_layer=norm_layer,
post_norm=post_norm,
layer_scale=layer_scale,
offset_scale=offset_scale,
with_cp=with_cp,
dw_kernel_size=dw_kernel_size, # for InternImage-H/G
res_post_norm=res_post_norm, # for InternImage-H/G
center_feature_scale=center_feature_scale # for InternImage-H/G
) for i in range(depth)
])
if not self.post_norm or center_feature_scale:
self.norm = build_norm_layer(channels, 'LN')
self.post_norm_block_ids = post_norm_block_ids
if post_norm_block_ids is not None: # for InternImage-H/G
self.post_norms = nn.ModuleList(
[build_norm_layer(channels, 'LN', eps=1e-6) for _ in post_norm_block_ids]
)
self.downsample = DownsampleLayer(
channels=channels, norm_layer=norm_layer) if downsample else None
def forward(self, x, return_wo_downsample=False):
for i, blk in enumerate(self.blocks):
x = blk(x)
if (self.post_norm_block_ids is not None) and (i in self.post_norm_block_ids):
index = self.post_norm_block_ids.index(i)
x = self.post_norms[index](x) # for InternImage-H/G
if not self.post_norm or self.center_feature_scale:
x = self.norm(x)
if return_wo_downsample:
x_ = x
if self.downsample is not None:
x = self.downsample(x)
if return_wo_downsample:
return x, x_
return x
class InternImage(Backbone):
r""" InternImage
A PyTorch impl of : `InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions` -
https://arxiv.org/pdf/2103.14030
Args:
core_op (str): Core operator. Default: 'DCNv3'
channels (int): Number of the first stage. Default: 64
depths (list): Depth of each block. Default: [3, 4, 18, 5]
groups (list): Groups of each block. Default: [3, 6, 12, 24]
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
drop_rate (float): Probability of an element to be zeroed. Default: 0.
drop_path_rate (float): Stochastic depth rate. Default: 0.
act_layer (str): Activation layer. Default: 'GELU'
norm_layer (str): Normalization layer. Default: 'LN'
layer_scale (bool): Whether to use layer scale. Default: False
cls_scale (bool): Whether to use class scale. Default: False
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
dw_kernel_size (int): Size of the dwconv. Default: None
level2_post_norm (bool): Whether to use level2 post norm. Default: False
level2_post_norm_block_ids (list): Indexes of post norm blocks. Default: None
res_post_norm (bool): Whether to use res post norm. Default: False
center_feature_scale (bool): Whether to use center feature scale. Default: False
"""
def __init__(self,
core_op='DCNv3',
channels=64,
depths=[3, 4, 18, 5],
groups=[3, 6, 12, 24],
mlp_ratio=4.,
drop_rate=0.,
drop_path_rate=0.2,
drop_path_type='linear',
act_layer='GELU',
norm_layer='LN',
layer_scale=None,
offset_scale=1.0,
post_norm=False,
with_cp=False,
dw_kernel_size=None, # for InternImage-H/G
level2_post_norm=False, # for InternImage-H/G
level2_post_norm_block_ids=None, # for InternImage-H/G
res_post_norm=False, # for InternImage-H/G
center_feature_scale=False, # for InternImage-H/G
out_indices=(0, 1, 2, 3),
init_cfg=None,
**kwargs):
super().__init__()
self.core_op = core_op
self.num_levels = len(depths)
self.depths = depths
self.channels = channels
self.num_features = int(channels * 2**(self.num_levels - 1))
self.post_norm = post_norm
self.mlp_ratio = mlp_ratio
self.init_cfg = init_cfg
self.out_indices = out_indices
self.level2_post_norm_block_ids = level2_post_norm_block_ids
logger = setup_logger(name="InternImage")
logger.info(f'using core type: {core_op}')
logger.info(f'using activation layer: {act_layer}')
logger.info(f'using main norm layer: {norm_layer}')
logger.info(f'using dpr: {drop_path_type}, {drop_path_rate}')
logger.info(f"level2_post_norm: {level2_post_norm}")
logger.info(f"level2_post_norm_block_ids: {level2_post_norm_block_ids}")
logger.info(f"res_post_norm: {res_post_norm}")
in_chans = 3
self.patch_embed = StemLayer(in_chans=in_chans,
out_chans=channels,
act_layer=act_layer,
norm_layer=norm_layer)
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
]
if drop_path_type == 'uniform':
for i in range(len(dpr)):
dpr[i] = drop_path_rate
self.levels = nn.ModuleList()
for i in range(self.num_levels):
post_norm_block_ids = level2_post_norm_block_ids if level2_post_norm and (
i == 2) else None # for InternImage-H/G
level = InternImageBlock(
core_op=getattr(opsm, core_op),
channels=int(channels * 2**i),
depth=depths[i],
groups=groups[i],
mlp_ratio=self.mlp_ratio,
drop=drop_rate,
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
act_layer=act_layer,
norm_layer=norm_layer,
post_norm=post_norm,
downsample=(i < self.num_levels - 1),
layer_scale=layer_scale,
offset_scale=offset_scale,
with_cp=with_cp,
dw_kernel_size=dw_kernel_size, # for InternImage-H/G
post_norm_block_ids=post_norm_block_ids, # for InternImage-H/G
res_post_norm=res_post_norm, # for InternImage-H/G
center_feature_scale=center_feature_scale # for InternImage-H/G
)
self.levels.append(level)
self.num_layers = len(depths)
self.apply(self._init_weights)
self.apply(self._init_deform_weights)
# add basic info for d2 backbone
self._out_features = ["res{}".format(i+2) for i in self.out_indices]
self._out_feature_channels = {
"res{}".format(i+2): self.channels * 2**i for i in self.out_indices
}
self._out_feature_strides = {"res{}".format(i+2): 2 ** (i + 2) for i in self.out_indices}
self._size_devisibility = 32
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def _init_deform_weights(self, m):
if isinstance(m, getattr(opsm, self.core_op)):
m._reset_parameters()
def forward(self, x):
x = self.patch_embed(x)
x = self.pos_drop(x)
# d2 need dict output
# seq_out = []
seq_out = {}
for level_idx, level in enumerate(self.levels):
x, x_ = level(x, return_wo_downsample=True)
if level_idx in self.out_indices:
# seq_out.append(x_.permute(0, 3, 1, 2).contiguous())
seq_out["res{}".format(level_idx+2)] = x_.permute(0, 3, 1, 2).contiguous()
return seq_out
@BACKBONE_REGISTRY.register()
class D2InternImage(InternImage):
def __init__(self, cfg, input_shape):
super().__init__(
core_op= cfg.MODEL.INTERNIMAGE.CORE_OP ,
channels=cfg.MODEL.INTERNIMAGE.CHANNELS,
depths=cfg.MODEL.INTERNIMAGE.DEPTHS,
groups=cfg.MODEL.INTERNIMAGE.GROUPS,
mlp_ratio= cfg.MODEL.INTERNIMAGE.MLP_RATIO ,
drop_path_rate=cfg.MODEL.INTERNIMAGE.DROP_PATH_RATE,
norm_layer=cfg.MODEL.INTERNIMAGE.NORM_LAYER,
layer_scale=cfg.MODEL.INTERNIMAGE.LAYER_SCALE ,
offset_scale=cfg.MODEL.INTERNIMAGE.OFFSET_SCALE,
post_norm=cfg.MODEL.INTERNIMAGE.POST_NORM,
with_cp=cfg.MODEL.INTERNIMAGE.WITH_CP ,
out_indices=cfg.MODEL.INTERNIMAGE.OUT_IINDICES,
dw_kernel_size= cfg.MODEL.INTERNIMAGE.DW_KERNEL_SIZE, # for InternImage-H/G
res_post_norm= cfg.MODEL.INTERNIMAGE.RES_POST_NORM, # for InternImage-H/G
level2_post_norm= cfg.MODEL.INTERNIMAGE.LEVEL2_POST_NORM, # for InternImage-H/G
level2_post_norm_block_ids= cfg.MODEL.INTERNIMAGE.LEVEL2_POST_NORM_BLOCK_IDS, # for InternImage-H/G
center_feature_scale= cfg.MODEL.INTERNIMAGE.CENTER_FEATURE_SCALE, # for InternImage-H/G
)
pretrained_weight = cfg.MODEL.INTERNIMAGE.PRETRAINED_WEIGHT
if pretrained_weight:
checkpoint = torch.load(pretrained_weight, map_location='cpu')
print(f'\nload pretrain weight from {pretrained_weight} \n')
self.load_state_dict(checkpoint['model'], strict=False)
def forward(self, x):
"""
Args:
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
Returns:
dict[str->Tensor]: names and the corresponding features
"""
assert (
x.dim() == 4
), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!"
outputs = {}
y = super().forward(x)
for k in y.keys():
if k in self._out_features:
outputs[k] = y[k]
return outputs
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
)
for name in self._out_features
}
@property
def size_divisibility(self):
return 32
|