File size: 20,864 Bytes
2aac0e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import os
import itertools
import logging

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from collections import OrderedDict

from einops import rearrange
from timm.models.layers import DropPath, trunc_normal_

from detectron2.utils.file_io import PathManager
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec

from .registry import register_backbone

logger = logging.getLogger(__name__)


class MySequential(nn.Sequential):
    def forward(self, *inputs):
        for module in self._modules.values():
            if type(inputs) == tuple:
                inputs = module(*inputs)
            else:
                inputs = module(inputs)
        return inputs


class PreNorm(nn.Module):
    def __init__(self, norm, fn, drop_path=None):
        super().__init__()
        self.norm = norm
        self.fn = fn
        self.drop_path = drop_path

    def forward(self, x, *args, **kwargs):
        shortcut = x
        if self.norm != None:
            x, size = self.fn(self.norm(x), *args, **kwargs)
        else:
            x, size = self.fn(x, *args, **kwargs)

        if self.drop_path:
            x = self.drop_path(x)

        x = shortcut + x

        return x, size


class Mlp(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.net = nn.Sequential(OrderedDict([
            ("fc1", nn.Linear(in_features, hidden_features)),
            ("act", act_layer()),
            ("fc2", nn.Linear(hidden_features, out_features))
        ]))

    def forward(self, x, size):
        return self.net(x), size


class DepthWiseConv2d(nn.Module):
    def __init__(
        self,
        dim_in,
        kernel_size,
        padding,
        stride,
        bias=True,
    ):
        super().__init__()
        self.dw = nn.Conv2d(
            dim_in, dim_in,
            kernel_size=kernel_size,
            padding=padding,
            groups=dim_in,
            stride=stride,
            bias=bias
        )

    def forward(self, x, size):
        B, N, C = x.shape
        H, W = size
        assert N == H * W

        x = self.dw(x.transpose(1, 2).view(B, C, H, W))
        size = (x.size(-2), x.size(-1))
        x = x.flatten(2).transpose(1, 2)
        return x, size


class ConvEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(
        self,
        patch_size=7,
        in_chans=3,
        embed_dim=64,
        stride=4,
        padding=2,
        norm_layer=None,
        pre_norm=True
    ):
        super().__init__()
        self.patch_size = patch_size

        self.proj = nn.Conv2d(
            in_chans, embed_dim,
            kernel_size=patch_size,
            stride=stride,
            padding=padding
        )

        dim_norm = in_chans if pre_norm else embed_dim
        self.norm = norm_layer(dim_norm) if norm_layer else None

        self.pre_norm = pre_norm

    def forward(self, x, size):
        H, W = size
        if len(x.size()) == 3:
            if self.norm and self.pre_norm:
                x = self.norm(x)
            x = rearrange(
                x, 'b (h w) c -> b c h w',
                h=H, w=W
            )

        x = self.proj(x)

        _, _, H, W = x.shape
        x = rearrange(x, 'b c h w -> b (h w) c')
        if self.norm and not self.pre_norm:
            x = self.norm(x)

        return x, (H, W)


class ChannelAttention(nn.Module):

    def __init__(self, dim, groups=8, qkv_bias=True):
        super().__init__()

        self.groups = groups
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim)

    def forward(self, x, size):
        B, N, C = x.shape

        qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * (N ** -0.5)
        attention = q.transpose(-1, -2) @ k
        attention = attention.softmax(dim=-1)
        x = (attention @ v.transpose(-1, -2)).transpose(-1, -2)
        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        return x, size


class ChannelBlock(nn.Module):

    def __init__(self, dim, groups, mlp_ratio=4., qkv_bias=True,
                 drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 conv_at_attn=True, conv_at_ffn=True):
        super().__init__()

        drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

        self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
        self.channel_attn = PreNorm(
            norm_layer(dim),
            ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias),
            drop_path
        )
        self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
        self.ffn = PreNorm(
            norm_layer(dim),
            Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
            drop_path
        )

    def forward(self, x, size):
        if self.conv1:
            x, size = self.conv1(x, size)
        x, size = self.channel_attn(x, size)

        if self.conv2:
            x, size = self.conv2(x, size)
        x, size = self.ffn(x, size)

        return x, size


def window_partition(x, window_size: int):
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows


def window_reverse(windows, window_size: int, H: int, W: int):
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class WindowAttention(nn.Module):
    def __init__(self, dim, num_heads, window_size, qkv_bias=True):

        super().__init__()
        self.dim = dim
        self.window_size = window_size
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim)

        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, size):

        H, W = size
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)

        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        x = window_partition(x, self.window_size)
        x = x.view(-1, self.window_size * self.window_size, C)

        # W-MSA/SW-MSA
        # attn_windows = self.attn(x_windows)

        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))
        attn = self.softmax(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)

        # merge windows
        x = x.view(
            -1, self.window_size, self.window_size, C
        )
        x = window_reverse(x, self.window_size, Hp, Wp)

        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        return x, size


class SpatialBlock(nn.Module):

    def __init__(self, dim, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True):
        super().__init__()

        drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

        self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
        self.window_attn = PreNorm(
            norm_layer(dim),
            WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias),
            drop_path
        )
        self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
        self.ffn = PreNorm(
            norm_layer(dim),
            Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
            drop_path
        )

    def forward(self, x, size):
        if self.conv1:
            x, size = self.conv1(x, size)
        x, size = self.window_attn(x, size)

        if self.conv2:
            x, size = self.conv2(x, size)
        x, size = self.ffn(x, size)
        return x, size


class DaViT(nn.Module):
    """ DaViT: Dual-Attention Transformer

    Args:
        img_size (int): Image size, Default: 224.
        in_chans (int): Number of input image channels. Default: 3.
        num_classes (int): Number of classes for classification head. Default: 1000.
        patch_size (tuple(int)): Patch size of convolution in different stages. Default: (7, 2, 2, 2).
        patch_stride (tuple(int)): Patch stride of convolution in different stages. Default: (4, 2, 2, 2).
        patch_padding (tuple(int)): Patch padding of convolution in different stages. Default: (3, 0, 0, 0).
        patch_prenorm (tuple(bool)): If True, perform norm before convlution layer. Default: (True, False, False, False).
        embed_dims (tuple(int)): Patch embedding dimension in different stages. Default: (64, 128, 192, 256).
        num_heads (tuple(int)): Number of spatial attention heads in different stages. Default: (4, 8, 12, 16).
        num_groups (tuple(int)): Number of channel groups in different stages. Default: (4, 8, 12, 16).
        window_size (int): Window size. Default: 7.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True.
        drop_path_rate (float): Stochastic depth rate. Default: 0.1.
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        enable_checkpoint (bool): If True, enable checkpointing. Default: False.
        conv_at_attn (bool): If True, performe depthwise convolution before attention layer. Default: True.
        conv_at_ffn (bool): If True, performe depthwise convolution before ffn layer. Default: True.
    """

    def __init__(
        self,
        img_size=224,
        in_chans=3,
        num_classes=1000,
        depths=(1, 1, 3, 1),
        patch_size=(7, 2, 2, 2),
        patch_stride=(4, 2, 2, 2),
        patch_padding=(3, 0, 0, 0),
        patch_prenorm=(False, False, False, False),
        embed_dims=(64, 128, 192, 256),
        num_heads=(3, 6, 12, 24),
        num_groups=(3, 6, 12, 24),
        window_size=7,
        mlp_ratio=4.,
        qkv_bias=True,
        drop_path_rate=0.1,
        norm_layer=nn.LayerNorm,
        enable_checkpoint=False,
        conv_at_attn=True,
        conv_at_ffn=True,
        out_indices=[],
     ):
        super().__init__()

        self.num_classes = num_classes
        self.embed_dims = embed_dims
        self.num_heads = num_heads
        self.num_groups = num_groups
        self.num_stages = len(self.embed_dims)
        self.enable_checkpoint = enable_checkpoint
        assert self.num_stages == len(self.num_heads) == len(self.num_groups)

        num_stages = len(embed_dims)
        self.img_size = img_size
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)*2)]


        depth_offset = 0
        convs = []
        blocks = []
        for i in range(num_stages):
            conv_embed = ConvEmbed(
                patch_size=patch_size[i],
                stride=patch_stride[i],
                padding=patch_padding[i],
                in_chans=in_chans if i == 0 else self.embed_dims[i - 1],
                embed_dim=self.embed_dims[i],
                norm_layer=norm_layer,
                pre_norm=patch_prenorm[i]
            )
            convs.append(conv_embed)

            print(f'=> Depth offset in stage {i}: {depth_offset}')
            block = MySequential(
                *[
                    MySequential(OrderedDict([
                        (
                            'spatial_block', SpatialBlock(
                                embed_dims[i],
                                num_heads[i],
                                window_size,
                                drop_path_rate=dpr[depth_offset+j*2],
                                qkv_bias=qkv_bias,
                                mlp_ratio=mlp_ratio,
                                conv_at_attn=conv_at_attn,
                                conv_at_ffn=conv_at_ffn,
                            )
                        ),
                        (
                            'channel_block', ChannelBlock(
                                embed_dims[i],
                                num_groups[i],
                                drop_path_rate=dpr[depth_offset+j*2+1],
                                qkv_bias=qkv_bias,
                                mlp_ratio=mlp_ratio,
                                conv_at_attn=conv_at_attn,
                                conv_at_ffn=conv_at_ffn,
                            )
                        )
                    ])) for j in range(depths[i])
                ]
            )
            blocks.append(block)
            depth_offset += depths[i]*2

        self.convs = nn.ModuleList(convs)
        self.blocks = nn.ModuleList(blocks)

        self.out_indices = out_indices
        # self.norms = norm_layer(self.embed_dims[-1])
        # self.avgpool = nn.AdaptiveAvgPool1d(1)
        # self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
        self.apply(self._init_weights)

    @property
    def dim_out(self):
        return self.embed_dims[-1]

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.Conv2d):
            nn.init.normal_(m.weight, std=0.02)
            for name, _ in m.named_parameters():
                if name in ['bias']:
                    nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.weight, 1.0)
            nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.BatchNorm2d):
            nn.init.constant_(m.weight, 1.0)
            nn.init.constant_(m.bias, 0)

    def _try_remap_keys(self, pretrained_dict):
        remap_keys = {
            "conv_embeds": "convs",
            "main_blocks": "blocks",
            "0.cpe.0.proj": "spatial_block.conv1.fn.dw",
            "0.attn": "spatial_block.window_attn.fn",
            "0.cpe.1.proj": "spatial_block.conv2.fn.dw",
            "0.mlp": "spatial_block.ffn.fn.net",
            "1.cpe.0.proj": "channel_block.conv1.fn.dw",
            "1.attn": "channel_block.channel_attn.fn",
            "1.cpe.1.proj": "channel_block.conv2.fn.dw",
            "1.mlp": "channel_block.ffn.fn.net",
            "0.norm1": "spatial_block.window_attn.norm",
            "0.norm2": "spatial_block.ffn.norm",
            "1.norm1": "channel_block.channel_attn.norm",
            "1.norm2": "channel_block.ffn.norm"
        }

        full_key_mappings = {}
        for k in pretrained_dict.keys():
            old_k = k
            for remap_key in remap_keys.keys():
                if remap_key in k:
                    print(f'=> Repace {remap_key} with {remap_keys[remap_key]}')
                    k = k.replace(remap_key, remap_keys[remap_key])

            full_key_mappings[old_k] = k

        return full_key_mappings

    def from_state_dict(self, pretrained_dict, pretrained_layers=[], verbose=True):
        model_dict = self.state_dict()
        stripped_key = lambda x: x[14:] if x.startswith('image_encoder.') else x
        full_key_mappings = self._try_remap_keys(pretrained_dict)

        pretrained_dict = {
            stripped_key(full_key_mappings[k]): v for k, v in pretrained_dict.items()
            if stripped_key(full_key_mappings[k]) in model_dict.keys()
        }
        need_init_state_dict = {}
        for k, v in pretrained_dict.items():
            need_init = (
                k.split('.')[0] in pretrained_layers
                or pretrained_layers[0] == '*'
            )
            if need_init:
                if verbose:
                    print(f'=> init {k} from pretrained state dict')

                need_init_state_dict[k] = v
        self.load_state_dict(need_init_state_dict, strict=False)

    def from_pretrained(self, pretrained='', pretrained_layers=[], verbose=True):
        if os.path.isfile(pretrained):
            print(f'=> loading pretrained model {pretrained}')
            pretrained_dict = torch.load(pretrained, map_location='cpu')

            self.from_state_dict(pretrained_dict, pretrained_layers, verbose)

    def forward_features(self, x):
        input_size = (x.size(2), x.size(3))

        outs = {}
        for i, (conv, block) in enumerate(zip(self.convs, self.blocks)):
            x, input_size = conv(x, input_size)
            if self.enable_checkpoint:
                x, input_size = checkpoint.checkpoint(block, x, input_size)
            else:
                x, input_size = block(x, input_size)
            if i in self.out_indices:
                out = x.view(-1, *input_size, self.embed_dims[i]).permute(0, 3, 1, 2).contiguous()
                outs["res{}".format(i + 2)] = out       

        if len(self.out_indices) == 0:
            outs["res5"] = x.view(-1, *input_size, self.embed_dims[-1]).permute(0, 3, 1, 2).contiguous()
        
        return outs

    def forward(self, x):
        x = self.forward_features(x)
        # x = self.head(x)
        return x

class D2DaViT(DaViT, Backbone):
    def __init__(self, cfg, input_shape):

        spec = cfg['BACKBONE']['DAVIT']

        super().__init__(
            num_classes=0,
            depths=spec['DEPTHS'],
            embed_dims=spec['DIM_EMBED'],
            num_heads=spec['NUM_HEADS'],
            num_groups=spec['NUM_GROUPS'],
            patch_size=spec['PATCH_SIZE'],
            patch_stride=spec['PATCH_STRIDE'],
            patch_padding=spec['PATCH_PADDING'],
            patch_prenorm=spec['PATCH_PRENORM'],
            drop_path_rate=spec['DROP_PATH_RATE'],
            img_size=input_shape,
            window_size=spec.get('WINDOW_SIZE', 7),
            enable_checkpoint=spec.get('ENABLE_CHECKPOINT', False),
            conv_at_attn=spec.get('CONV_AT_ATTN', True),
            conv_at_ffn=spec.get('CONV_AT_FFN', True),
            out_indices=spec.get('OUT_INDICES', []),
        )

        self._out_features = cfg['BACKBONE']['DAVIT']['OUT_FEATURES']

        self._out_feature_strides = {
            "res2": 4,
            "res3": 8,
            "res4": 16,
            "res5": 32,
        }
        self._out_feature_channels = {
            "res2": self.embed_dims[0],
            "res3": self.embed_dims[1],
            "res4": self.embed_dims[2],
            "res5": self.embed_dims[3],
        }

    def forward(self, x):
        """
        Args:
            x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
        Returns:
            dict[str->Tensor]: names and the corresponding features
        """
        assert (
            x.dim() == 4
        ), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!"
        outputs = {}
        y = super().forward(x)

        for k in y.keys():
            if k in self._out_features:
                outputs[k] = y[k]
        return outputs

    def output_shape(self):
        return {
            name: ShapeSpec(
                channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
            )
            for name in self._out_features
        }

    @property
    def size_divisibility(self):
        return 32

@register_backbone
def get_davit_backbone(cfg):
    davit = D2DaViT(cfg['MODEL'], 224)    

    if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True:
        filename = cfg['MODEL']['BACKBONE']['PRETRAINED']
        logger.info(f'=> init from {filename}')
        davit.from_pretrained(
            filename, 
            cfg['MODEL']['BACKBONE']['DAVIT'].get('PRETRAINED_LAYERS', ['*']), 
            cfg['VERBOSE'])

    return davit