File size: 22,363 Bytes
2aac0e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8468984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aac0e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
"""
import torch
import torch.nn.functional as F
from torch import nn
# from ..backbone import build_backbone, Backbone
# from ..body.encoder import build_encoder
# from ..body.decoder import build_decoder

from detectron2.modeling import  build_backbone

from .pixel_decoder.maskdino_encoder import build_pixel_decoder
from .transformer_decoder.maskdino_decoder import build_transformer_decoder

import random
from transformers import AutoTokenizer
from collections import OrderedDict
from ..modules.point_features import point_sample
from timm.models.layers import trunc_normal_
from transformers import CLIPTokenizer,CLIPTextModel
from .vos_utils import masks_to_boxes, FeatureFuser
import numpy as np 
import math


def rand_sample(x, max_len):
    if x.shape[1] <= max_len:
        return x
    else:
        rand_idx = torch.randperm(x.shape[1])[:max_len]
        return x[:,rand_idx]


def agg_lang_feat(features, mask, pool_type="average"):
    """average pooling of language features"""
    # feat: (bs, seq_len, C)
    # mask: (bs, seq_len)
    if pool_type == "average":
        embedded = features * mask.unsqueeze(-1).float() # use mask to zero out invalid token features
        aggregate = embedded.sum(1) / (mask.sum(-1).unsqueeze(-1).float())
    elif pool_type == "max":
        out = []
        for i in range(len(features)):
            pool_feat, _ = torch.max(features[i][mask[i]], 0) # (L, C) -> (C, )
            out.append(pool_feat)
        aggregate = torch.stack(out, dim=0) # (bs, C)
    else:
        raise ValueError("pool_type should be average or max")
    return aggregate

class GLEE_Model(nn.Module):
    """
    Main class for mask classification semantic segmentation architectures.
    """
    def __init__(self, cfg, matcher, device, video_info, contras_mean):
        super().__init__()
        self.cfg = cfg
        self.matcher = matcher
        self.backbone = build_backbone(cfg)
        output_channels = [v for k,v in self.backbone._out_feature_channels.items()]
        self.sot_fuser = FeatureFuser(output_channels[-3:], 256)
        
       
        self.tokenizer = CLIPTokenizer.from_pretrained('GLEE/clip_vit_base_patch32') 
        self.tokenizer.add_special_tokens({'cls_token': self.tokenizer.eos_token})
        self.text_encoder = CLIPTextModel.from_pretrained('GLEE/clip_vit_base_patch32')
        # self.text_encoder_teacher = CLIPTextModel.from_pretrained('GLEE/clip_vit_base_patch32')
        self.lang_encoder = None
        # for p in self.text_encoder_teacher.parameters():
            # p.requires_grad = False
        self.lang_projection = nn.Parameter(torch.rand(cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM, cfg.MODEL.DIM_PROJ))
        self.text_encode_type = 'clip_teacher'
        
        # self.lang_encoder = None     
        self.pixel_decoder = build_pixel_decoder(cfg, self.backbone.output_shape())
        transformer_predictor_in_channels = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
        self.predictor = build_transformer_decoder(cfg, transformer_predictor_in_channels, lang_encoder = self.lang_encoder, mask_classification=True,)
        self.to(device)
        
        self.video_info = video_info
        self.contras_mean = contras_mean

        self.track_loss_version = cfg.MODEL.TRACK_VERSION

        self.no_mask_tasks = ['obj365', 'obj365_clip','openimage', 'openimage_clip', 'vg', 'grit', 'bdd_det', 'bdd_track_box'] 


        # for visual prompt
        hidden_dim = 256
        self.max_spatial_len = [512,512,512,512]
        self.mask_sptial_embed = nn.ParameterList([nn.Parameter(torch.empty(hidden_dim, hidden_dim)) for x in range(4)])
        trunc_normal_(self.mask_sptial_embed[0], std=.02)
        trunc_normal_(self.mask_sptial_embed[1], std=.02)
        trunc_normal_(self.mask_sptial_embed[2], std=.02)
        trunc_normal_(self.mask_sptial_embed[3], std=.02)
        # learnable positive negative indicator
        self.pn_indicator = nn.Embedding(2, hidden_dim)

    @property
    def device(self):
        return self.pixel_mean.device
    
    def forward(self, images, prompts, task, targets=None, batch_name_list=None, is_train = True, visual_prompt_type='scribble'):
        extra =  {}
        # dist_loss = None
        early_semantic = None

        if self.text_encode_type == "clip_teacher":
            if task not in ['grounding','rvos']:
                assert batch_name_list
                calsses_name_list = batch_name_list
                tokenized = self.tokenizer.batch_encode_plus(calsses_name_list,
                        max_length=self.cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN, # 256
                        padding='max_length' if self.cfg.MODEL.LANGUAGE_BACKBONE.PAD_MAX else "longest", # max_length
                        return_special_tokens_mask=True,
                        return_tensors='pt',
                        truncation=True).to(images.device)
                texts = (tokenized['input_ids'], tokenized['attention_mask'])
                token_x = self.text_encoder(*texts)['last_hidden_state']

                valid_mask = tokenized['attention_mask'].bool()
                # token_x_teacher = self.text_encoder_teacher(*texts)['last_hidden_state']
                # if is_train:
                # dist_loss =  F.mse_loss(token_x[valid_mask], token_x_teacher[valid_mask] )
                    # F.l2_loss(token_x[valid_mask], token_x_teacher[valid_mask] )  
                token_x = token_x @ self.lang_projection
                lang_feat_pool = agg_lang_feat(token_x, tokenized['attention_mask'], pool_type="average")  # (bs,  768)
                extra['class_embeddings'] = lang_feat_pool 
                if True: # early_fusion
                    gather_all_classtoken = token_x.flatten(0,1)[tokenized['attention_mask'].flatten(0,1)>0]
                    gather_all_classtoken = gather_all_classtoken.unsqueeze(0).repeat(len(images),1,1) #[bs,L,C]
                    gather_all_classtoken_mask = torch.ones_like(gather_all_classtoken[:,:,0])>0  #[bs,L]
                    early_semantic = {"hidden":gather_all_classtoken.float(),"masks":gather_all_classtoken_mask} 


        if 'grounding' in prompts:
 
            if self.text_encode_type == 'clip_frozen' or self.text_encode_type == 'clip_teacher':

                tokens = self.tokenizer(
                    prompts['grounding'], padding='max_length', truncation=True, max_length=self.cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN, return_tensors='pt'
                    )
                tokens = {key: value.to(images.device) for key, value in tokens.items()}

                texts = (tokens['input_ids'], tokens['attention_mask'])
                x = self.text_encoder(*texts)
                token_x = x['last_hidden_state']
                token_x = token_x @ self.lang_projection

                extra['grounding_tokens'] = token_x.permute(1,0,2) #[len,bz,C]

                non_zero_query_mask = tokens['attention_mask']
                lang_feat_pool = agg_lang_feat(token_x, non_zero_query_mask, pool_type="average").unsqueeze(1) # (bs, 1, 768)

                dist_loss =  (lang_feat_pool*0).sum()
                
                extra['grounding_nonzero_mask'] = ~non_zero_query_mask.bool()  # [bz,len]
                extra['grounding_class'] = lang_feat_pool.squeeze(1) #[bz,C
                # gather_all_classtoken = token_x.flatten(0,1)[tokenized['attention_mask'].flatten(0,1)>0]
                # gather_all_classtoken = gather_all_classtoken.unsqueeze(0).repeat(len(images),1,1) #[bs,L,C]
                # gather_all_classtoken_mask = torch.ones_like(gather_all_classtoken[:,:,0])>0  #[bs,L]
                # early_semantic = {"hidden":gather_all_classtoken.float(),"masks":gather_all_classtoken_mask} 
                early_semantic = {"hidden":token_x.float(),"masks":tokens['attention_mask']>0} 
        

        if isinstance(images,torch.Tensor):
            features = self.backbone(images)
        else:
            features = self.backbone(images.tensor)


        if 'spatial' in prompts:
            ## setp 1,2,3
            key_images = [ images ]  #bz*[1,3,H,W]
            key_promptmasks = [m.unsqueeze(0) for m in prompts['spatial']] #bz*[1,1,H,W]

            prompt_mode = visual_prompt_type            
            ref_feats, ref_masks = self.get_template(key_images, key_promptmasks, prompt_mode) 
            early_fusion = {"hidden":ref_feats,"masks":ref_masks} 
            if early_semantic is None:
                early_semantic = early_fusion
            else:
                early_semantic["hidden"] = torch.cat([early_semantic["hidden"],early_fusion["hidden"]],dim=1)
                early_semantic["masks"] = torch.cat([early_semantic["masks"],early_fusion["masks"]],dim=1)

        
        # bz = len(images)//2
        mask_features, _, multi_scale_features, zero_loss = self.pixel_decoder.forward_features(features, masks=None, early_fusion = early_semantic)
        if 'spatial' in prompts:
            pos_masks = prompts['spatial']
            # neg_masks = [~p for p in prompts['spatial']]
            neg_masks = [p&False for p in prompts['spatial']]
            
            extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks})


            _,h,w = extra['spatial_query_pos_mask'][0].shape
            divisor = torch.tensor([h,w], device=mask_features.device)[None,]
            # Get mean pos spatial query
            non_zero_pos_point = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[-1]).t() for m in extra['spatial_query_pos_mask']]
            non_zero_pos_point = nn.utils.rnn.pad_sequence(non_zero_pos_point, padding_value=-1).permute(1,0,2)  
            non_zero_pos_mask = (non_zero_pos_point.sum(dim=-1) < 0)  
            spatial_query_pos = point_sample(mask_features, non_zero_pos_point.flip(dims=(2,)).type(mask_features.dtype), align_corners=True) #[(N, C, P)
            spatial_query_pos = torch.stack([x[m].mean(dim=0, keepdim=True) for x, m in zip(spatial_query_pos.transpose(1,2), ~non_zero_pos_mask)]).transpose(0,1).nan_to_num() # [1,bz,C]
            # Get mean neg spatial query
            non_zero_neg_point = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[-1]).t() for m in extra['spatial_query_neg_mask']]
            non_zero_neg_point = nn.utils.rnn.pad_sequence(non_zero_neg_point, padding_value=-1).permute(1,0,2)
            non_zero_neg_mask = (non_zero_neg_point.sum(dim=-1) < 0)
            spatial_query_neg = point_sample(mask_features, non_zero_neg_point.flip(dims=(2,)).type(mask_features.dtype), align_corners=True)
            spatial_query_neg = torch.stack([x[m].mean(dim=0, keepdim=True) for x, m in zip(spatial_query_neg.transpose(1,2), ~non_zero_neg_mask)]).transpose(0,1).nan_to_num()

            # Get layerwise spatial query
            src_spatial_queries = []
            src_spatial_maskings = []
            for i in range(len(multi_scale_features)):
                bs,dc,h,w = multi_scale_features[i].shape
                # src_mask_features = multi_scale_features[i].view(h,w,bs,dc)
                src_mask_features = multi_scale_features[i].permute(2,3,0,1)
                src_mask_features = src_mask_features @ self.mask_sptial_embed[i]

                non_zero_query_point_pos = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[i]).t() for m in extra['spatial_query_pos_mask']]
                non_zero_query_point_neg = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[i]).t() for m in extra['spatial_query_neg_mask']]
                non_zero_query_point = [torch.cat([x,y], dim=0) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)]
                pos_neg_indicator = [torch.cat([torch.ones(x.shape[0], device=x.device), -torch.ones(y.shape[0], device=y.device)]) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)]
                pos_neg_indicator = nn.utils.rnn.pad_sequence(pos_neg_indicator, padding_value=0)
                non_zero_query_point = nn.utils.rnn.pad_sequence(non_zero_query_point, padding_value=-1).permute(1,0,2)
                non_zero_query_mask = (non_zero_query_point.sum(dim=-1) < 0)
                non_zero_query_point[non_zero_query_mask] = 0

                spatial_tokens = point_sample(src_mask_features.permute(2,3,0,1), non_zero_query_point.flip(dims=(2,)).type(src_mask_features.dtype), align_corners=True).permute(2,0,1)
                spatial_tokens[pos_neg_indicator==1] += self.pn_indicator.weight[0:1]
                spatial_tokens[pos_neg_indicator==-1] += self.pn_indicator.weight[1:2]

                src_spatial_queries += [spatial_tokens]
                src_spatial_maskings += [non_zero_query_mask]

            extra['visual_prompt_tokens'] = src_spatial_queries #[len,bz,C]
            extra['visual_prompt_nonzero_mask'] = src_spatial_maskings  # [bz,len]
        
        outputs = self.predictor(multi_scale_features, mask_features, extra=extra, task=task, masks=None, targets=targets)
        return  outputs 
 


    
    def vos_step1(self, previous_image, prompts, task, targets=None, batch_name_list=None, is_train = False):
        extra = {}
        if isinstance(previous_image,torch.Tensor):
            features = self.backbone(previous_image)
        else:
            features = self.backbone(previous_image.tensor)
        # bz = len(images)//2

        ## setp 1,2,3
        key_images = [previous_image]  #bz*[1,3,H,W]
        key_promptmasks = [m.unsqueeze(0) for m in prompts['spatial']] #bz*[1,1,H,W]
        ref_feats, ref_masks = self.get_template(key_images, key_promptmasks) 

        early_fusion = {"hidden":ref_feats,"masks":ref_masks} 

        

        mask_features, _, multi_scale_features, zero_loss = self.pixel_decoder.forward_features(features, masks=None, early_fusion = early_fusion)
        

        prompt_multi_scale_features = multi_scale_features+[mask_features]

        if 'spatial' in prompts:
            pos_masks = prompts['spatial']
            # neg_masks = [~p for p in prompts['spatial']]
            neg_masks = [p&False for p in prompts['spatial']]
            
            extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks})
            # import pdb;pdb.set_trace()


            _,h,w = extra['spatial_query_pos_mask'][0].shape
            divisor = torch.tensor([h,w], device=mask_features.device)[None,]
            # Get mean pos spatial query
            non_zero_pos_point = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[-1]).t() for m in extra['spatial_query_pos_mask']]
            # [:,1:]第一个维度是指示属于那个batch,原本这里的mshape是【num_inst,H,W】,得到的nonzero 是【num_point,3】,[:,1:]是xy坐标,
            # #这里舍弃第一个维度是表示每张图片上prompt覆盖的物体的point混在一起采样,没有instance之间的区分. 因此每个图片都得到一个[512,2]的point set,是采样过后的正样本
            non_zero_pos_point = nn.utils.rnn.pad_sequence(non_zero_pos_point, padding_value=-1).permute(1,0,2)  # 把list中的结果通过padding concat到一起,得到的是[bz,512,2]
            
            non_zero_pos_mask = (non_zero_pos_point.sum(dim=-1) < 0) # 把xy坐标相加小于0的找出来
            spatial_query_pos = point_sample(mask_features, non_zero_pos_point.flip(dims=(2,)).type(mask_features.dtype), align_corners=True) #[(N, C, P)
            spatial_query_pos = torch.stack([x[m].mean(dim=0, keepdim=True) for x, m in zip(spatial_query_pos.transpose(1,2), ~non_zero_pos_mask)]).transpose(0,1).nan_to_num() # [1,bz,C]
            # import pdb;pdb.set_trace()
            # Get mean neg spatial query
            non_zero_neg_point = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[-1]).t() for m in extra['spatial_query_neg_mask']]
            non_zero_neg_point = nn.utils.rnn.pad_sequence(non_zero_neg_point, padding_value=-1).permute(1,0,2)
            non_zero_neg_mask = (non_zero_neg_point.sum(dim=-1) < 0)
            spatial_query_neg = point_sample(mask_features, non_zero_neg_point.flip(dims=(2,)).type(mask_features.dtype), align_corners=True)
            spatial_query_neg = torch.stack([x[m].mean(dim=0, keepdim=True) for x, m in zip(spatial_query_neg.transpose(1,2), ~non_zero_neg_mask)]).transpose(0,1).nan_to_num()

            # Get layerwise spatial query
            src_spatial_queries = []
            src_spatial_maskings = []
            for i in range(len(prompt_multi_scale_features)):
                bs,dc,h,w = prompt_multi_scale_features[i].shape
                # src_mask_features = multi_scale_features[i].view(h,w,bs,dc)
                src_mask_features = prompt_multi_scale_features[i].permute(2,3,0,1)
                # import pdb;pdb.set_trace()
                src_mask_features = src_mask_features @ self.mask_sptial_embed[i]

                non_zero_query_point_pos = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[i]).t() for m in extra['spatial_query_pos_mask']]
                non_zero_query_point_neg = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[i]).t() for m in extra['spatial_query_neg_mask']]
                non_zero_query_point = [torch.cat([x,y], dim=0) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)]
                pos_neg_indicator = [torch.cat([torch.ones(x.shape[0], device=x.device), -torch.ones(y.shape[0], device=y.device)]) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)]
                pos_neg_indicator = nn.utils.rnn.pad_sequence(pos_neg_indicator, padding_value=0)
                # import pdb;pdb.set_trace()
                non_zero_query_point = nn.utils.rnn.pad_sequence(non_zero_query_point, padding_value=-1).permute(1,0,2)
                non_zero_query_mask = (non_zero_query_point.sum(dim=-1) < 0)
                non_zero_query_point[non_zero_query_mask] = 0
                # import pdb;pdb.set_trace()
                spatial_tokens = point_sample(src_mask_features.permute(2,3,0,1), non_zero_query_point.flip(dims=(2,)).type(src_mask_features.dtype), align_corners=True).permute(2,0,1)
                spatial_tokens[pos_neg_indicator==1] += self.pn_indicator.weight[0:1]
                spatial_tokens[pos_neg_indicator==-1] += self.pn_indicator.weight[1:2]

                src_spatial_queries += [spatial_tokens]
                src_spatial_maskings += [non_zero_query_mask]
            
            extra['visual_prompt_tokens'] = src_spatial_queries #[len,bz,C]
            extra['visual_prompt_nonzero_mask'] = src_spatial_maskings  # [bz,len]

        return  early_fusion, extra
 


    def vos_step2(self, images, task, language_dict_features, last_extra, targets=None, batch_name_list=None, is_train = False):
        extra =  last_extra
        dist_loss = None
        if True:
            if task not in ['grounding','rvos']:
                assert batch_name_list
                calsses_name_list = batch_name_list
                tokenized = self.tokenizer.batch_encode_plus(calsses_name_list,
                        max_length=self.cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN, # 256
                        padding='max_length' if self.cfg.MODEL.LANGUAGE_BACKBONE.PAD_MAX else "longest", # max_length
                        return_special_tokens_mask=True,
                        return_tensors='pt',
                        truncation=True).to("cuda")

                texts = (tokenized['input_ids'], tokenized['attention_mask'])
                token_x = self.text_encoder(*texts)['last_hidden_state']
                token_x = token_x @ self.lang_projection
                lang_feat_pool = agg_lang_feat(token_x, tokenized['attention_mask'], pool_type="average")  # (bs, 768)
                extra['class_embeddings'] = lang_feat_pool
 
        if isinstance(images,torch.Tensor):
            features = self.backbone(images)
        else:
            features = self.backbone(images.tensor)
        # bz = len(images)//2
        # import pdb;pdb.set_trace()
        mask_features, _, multi_scale_features, zero_loss = self.pixel_decoder.forward_features(features, masks=None, early_fusion = language_dict_features)


        outputs = self.predictor(multi_scale_features, mask_features, extra=extra, task=task, masks=None, targets=targets)
        return  outputs
 



     

    def get_template(self, imgs, pad_masks, prompt_mode='scribble'):
        """img: (N, 3, H, W), mask: (N, 1, H, W), bbox: (1, 4)"""
        """get 4-channel template"""

        croped_img_with_mask = []

        for image_i, mask_i in zip( imgs, pad_masks):

            if prompt_mode in ['scribble','point']:
                image_with_mask = image_i + mask_i.to(image_i)
            else:
                image_with_mask = image_i 

            # image_with_mask = torch.cat([image_i,mask_i.to(image_i)],dim=1) #[1,3,H,W]
            box_i = masks_to_boxes(mask_i[0])  #[xyxy]
            box_i[:, 2:] = box_i[:, 2:] - box_i[:, :2] #xywh
            

            x, y, w, h = box_i[0].long().tolist()

            self.search_area_factor=2

            crop_sz = math.ceil(math.sqrt(w * h) * self.search_area_factor)
            x1 = max(0,round(x + 0.5 * w - crop_sz * 0.5))
            x2 = x1 + crop_sz
            y1 = max(0,round(y + 0.5 * h - crop_sz * 0.5))
            y2 = y1 + crop_sz

            im_crop = image_with_mask[:, :, y1:y2, x1:x2]
            # resize
            if im_crop.shape[-1] ==0 or im_crop.shape[-2] ==0 :
                im_crop = image_with_mask
            im_crop = F.interpolate(im_crop, (256,256), mode='bilinear', align_corners=False)
            croped_img_with_mask.append(im_crop)
        croped_img_with_mask = torch.cat(croped_img_with_mask,dim=0) #[bz,3,256,256]
        with torch.no_grad():
            ref_srcs = self.backbone(croped_img_with_mask.contiguous())
        ref_srcs = [v for k,v in ref_srcs.items()]
        ref_feats = self.sot_fuser(ref_srcs[1:]).float() #[bz,256,32,32]

        ref_feats = ref_feats.flatten(-2).permute(0, 2, 1) # (bs, L, C)
        ref_masks = torch.ones_like(ref_feats[:,:,0])>0  #[bs,L]
        
        return ref_feats, ref_masks