File size: 24,868 Bytes
2aac0e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
# Copyright (c) Facebook, Inc. and its affiliates.
import pickle
import numpy as np
from typing import Any, Dict
import fvcore.nn.weight_init as weight_init
import torch
import torch.nn.functional as F
from torch import nn


from .backbone import Backbone
from .registry import register_backbone

from detectron2.layers import (
    CNNBlockBase,
    Conv2d,
    DeformConv,
    ModulatedDeformConv,
    ShapeSpec,
    get_norm,
)
from detectron2.utils.file_io import PathManager

__all__ = [
    "ResNetBlockBase",
    "BasicBlock",
    "BottleneckBlock",
    "DeformBottleneckBlock",
    "BasicStem",
    "ResNet",
    "make_stage",
    "get_resnet_backbone",
]


class BasicBlock(CNNBlockBase):
    """
    The basic residual block for ResNet-18 and ResNet-34 defined in :paper:`ResNet`,
    with two 3x3 conv layers and a projection shortcut if needed.
    """

    def __init__(self, in_channels, out_channels, *, stride=1, norm="BN"):
        """
        Args:
            in_channels (int): Number of input channels.
            out_channels (int): Number of output channels.
            stride (int): Stride for the first conv.
            norm (str or callable): normalization for all conv layers.
                See :func:`layers.get_norm` for supported format.
        """
        super().__init__(in_channels, out_channels, stride)

        if in_channels != out_channels:
            self.shortcut = Conv2d(
                in_channels,
                out_channels,
                kernel_size=1,
                stride=stride,
                bias=False,
                norm=get_norm(norm, out_channels),
            )
        else:
            self.shortcut = None

        self.conv1 = Conv2d(
            in_channels,
            out_channels,
            kernel_size=3,
            stride=stride,
            padding=1,
            bias=False,
            norm=get_norm(norm, out_channels),
        )

        self.conv2 = Conv2d(
            out_channels,
            out_channels,
            kernel_size=3,
            stride=1,
            padding=1,
            bias=False,
            norm=get_norm(norm, out_channels),
        )

        for layer in [self.conv1, self.conv2, self.shortcut]:
            if layer is not None:  # shortcut can be None
                weight_init.c2_msra_fill(layer)

    def forward(self, x):
        out = self.conv1(x)
        out = F.relu_(out)
        out = self.conv2(out)

        if self.shortcut is not None:
            shortcut = self.shortcut(x)
        else:
            shortcut = x

        out += shortcut
        out = F.relu_(out)
        return out


class BottleneckBlock(CNNBlockBase):
    """
    The standard bottleneck residual block used by ResNet-50, 101 and 152
    defined in :paper:`ResNet`.  It contains 3 conv layers with kernels
    1x1, 3x3, 1x1, and a projection shortcut if needed.
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        *,
        bottleneck_channels,
        stride=1,
        num_groups=1,
        norm="BN",
        stride_in_1x1=False,
        dilation=1,
    ):
        """
        Args:
            bottleneck_channels (int): number of output channels for the 3x3
                "bottleneck" conv layers.
            num_groups (int): number of groups for the 3x3 conv layer.
            norm (str or callable): normalization for all conv layers.
                See :func:`layers.get_norm` for supported format.
            stride_in_1x1 (bool): when stride>1, whether to put stride in the
                first 1x1 convolution or the bottleneck 3x3 convolution.
            dilation (int): the dilation rate of the 3x3 conv layer.
        """
        super().__init__(in_channels, out_channels, stride)

        if in_channels != out_channels:
            self.shortcut = Conv2d(
                in_channels,
                out_channels,
                kernel_size=1,
                stride=stride,
                bias=False,
                norm=get_norm(norm, out_channels),
            )
        else:
            self.shortcut = None

        # The original MSRA ResNet models have stride in the first 1x1 conv
        # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
        # stride in the 3x3 conv
        stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)

        self.conv1 = Conv2d(
            in_channels,
            bottleneck_channels,
            kernel_size=1,
            stride=stride_1x1,
            bias=False,
            norm=get_norm(norm, bottleneck_channels),
        )

        self.conv2 = Conv2d(
            bottleneck_channels,
            bottleneck_channels,
            kernel_size=3,
            stride=stride_3x3,
            padding=1 * dilation,
            bias=False,
            groups=num_groups,
            dilation=dilation,
            norm=get_norm(norm, bottleneck_channels),
        )

        self.conv3 = Conv2d(
            bottleneck_channels,
            out_channels,
            kernel_size=1,
            bias=False,
            norm=get_norm(norm, out_channels),
        )

        for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
            if layer is not None:  # shortcut can be None
                weight_init.c2_msra_fill(layer)

        # Zero-initialize the last normalization in each residual branch,
        # so that at the beginning, the residual branch starts with zeros,
        # and each residual block behaves like an identity.
        # See Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
        # "For BN layers, the learnable scaling coefficient γ is initialized
        # to be 1, except for each residual block's last BN
        # where γ is initialized to be 0."

        # nn.init.constant_(self.conv3.norm.weight, 0)
        # TODO this somehow hurts performance when training GN models from scratch.
        # Add it as an option when we need to use this code to train a backbone.

    def forward(self, x):
        out = self.conv1(x)
        out = F.relu_(out)

        out = self.conv2(out)
        out = F.relu_(out)

        out = self.conv3(out)

        if self.shortcut is not None:
            shortcut = self.shortcut(x)
        else:
            shortcut = x

        out += shortcut
        out = F.relu_(out)
        return out


class DeformBottleneckBlock(CNNBlockBase):
    """
    Similar to :class:`BottleneckBlock`, but with :paper:`deformable conv <deformconv>`
    in the 3x3 convolution.
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        *,
        bottleneck_channels,
        stride=1,
        num_groups=1,
        norm="BN",
        stride_in_1x1=False,
        dilation=1,
        deform_modulated=False,
        deform_num_groups=1,
    ):
        super().__init__(in_channels, out_channels, stride)
        self.deform_modulated = deform_modulated

        if in_channels != out_channels:
            self.shortcut = Conv2d(
                in_channels,
                out_channels,
                kernel_size=1,
                stride=stride,
                bias=False,
                norm=get_norm(norm, out_channels),
            )
        else:
            self.shortcut = None

        stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)

        self.conv1 = Conv2d(
            in_channels,
            bottleneck_channels,
            kernel_size=1,
            stride=stride_1x1,
            bias=False,
            norm=get_norm(norm, bottleneck_channels),
        )

        if deform_modulated:
            deform_conv_op = ModulatedDeformConv
            # offset channels are 2 or 3 (if with modulated) * kernel_size * kernel_size
            offset_channels = 27
        else:
            deform_conv_op = DeformConv
            offset_channels = 18

        self.conv2_offset = Conv2d(
            bottleneck_channels,
            offset_channels * deform_num_groups,
            kernel_size=3,
            stride=stride_3x3,
            padding=1 * dilation,
            dilation=dilation,
        )
        self.conv2 = deform_conv_op(
            bottleneck_channels,
            bottleneck_channels,
            kernel_size=3,
            stride=stride_3x3,
            padding=1 * dilation,
            bias=False,
            groups=num_groups,
            dilation=dilation,
            deformable_groups=deform_num_groups,
            norm=get_norm(norm, bottleneck_channels),
        )

        self.conv3 = Conv2d(
            bottleneck_channels,
            out_channels,
            kernel_size=1,
            bias=False,
            norm=get_norm(norm, out_channels),
        )

        for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
            if layer is not None:  # shortcut can be None
                weight_init.c2_msra_fill(layer)

        nn.init.constant_(self.conv2_offset.weight, 0)
        nn.init.constant_(self.conv2_offset.bias, 0)

    def forward(self, x):
        out = self.conv1(x)
        out = F.relu_(out)

        if self.deform_modulated:
            offset_mask = self.conv2_offset(out)
            offset_x, offset_y, mask = torch.chunk(offset_mask, 3, dim=1)
            offset = torch.cat((offset_x, offset_y), dim=1)
            mask = mask.sigmoid()
            out = self.conv2(out, offset, mask)
        else:
            offset = self.conv2_offset(out)
            out = self.conv2(out, offset)
        out = F.relu_(out)

        out = self.conv3(out)

        if self.shortcut is not None:
            shortcut = self.shortcut(x)
        else:
            shortcut = x

        out += shortcut
        out = F.relu_(out)
        return out


class BasicStem(CNNBlockBase):
    """
    The standard ResNet stem (layers before the first residual block),
    with a conv, relu and max_pool.
    """

    def __init__(self, in_channels=3, out_channels=64, norm="BN"):
        """
        Args:
            norm (str or callable): norm after the first conv layer.
                See :func:`layers.get_norm` for supported format.
        """
        super().__init__(in_channels, out_channels, 4)
        self.in_channels = in_channels
        self.conv1 = Conv2d(
            in_channels,
            out_channels,
            kernel_size=7,
            stride=2,
            padding=3,
            bias=False,
            norm=get_norm(norm, out_channels),
        )
        weight_init.c2_msra_fill(self.conv1)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu_(x)
        x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
        return x


class ResNet(Backbone):
    """
    Implement :paper:`ResNet`.
    """

    def __init__(self, stem, stages, num_classes=None, out_features=None, freeze_at=0):
        """
        Args:
            stem (nn.Module): a stem module
            stages (list[list[CNNBlockBase]]): several (typically 4) stages,
                each contains multiple :class:`CNNBlockBase`.
            num_classes (None or int): if None, will not perform classification.
                Otherwise, will create a linear layer.
            out_features (list[str]): name of the layers whose outputs should
                be returned in forward. Can be anything in "stem", "linear", or "res2" ...
                If None, will return the output of the last layer.
            freeze_at (int): The number of stages at the beginning to freeze.
                see :meth:`freeze` for detailed explanation.
        """
        super().__init__()
        self.stem = stem
        self.num_classes = num_classes

        current_stride = self.stem.stride
        self._out_feature_strides = {"stem": current_stride}
        self._out_feature_channels = {"stem": self.stem.out_channels}

        self.stage_names, self.stages = [], []

        if out_features is not None:
            # Avoid keeping unused layers in this module. They consume extra memory
            # and may cause allreduce to fail
            num_stages = max(
                [{"res2": 1, "res3": 2, "res4": 3, "res5": 4}.get(f, 0) for f in out_features]
            )
            stages = stages[:num_stages]
        for i, blocks in enumerate(stages):
            assert len(blocks) > 0, len(blocks)
            for block in blocks:
                assert isinstance(block, CNNBlockBase), block

            name = "res" + str(i + 2)
            stage = nn.Sequential(*blocks)

            self.add_module(name, stage)
            self.stage_names.append(name)
            self.stages.append(stage)

            self._out_feature_strides[name] = current_stride = int(
                current_stride * np.prod([k.stride for k in blocks])
            )
            self._out_feature_channels[name] = curr_channels = blocks[-1].out_channels
        self.stage_names = tuple(self.stage_names)  # Make it static for scripting

        if num_classes is not None:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
            self.linear = nn.Linear(curr_channels, num_classes)

            # Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
            # "The 1000-way fully-connected layer is initialized by
            # drawing weights from a zero-mean Gaussian with standard deviation of 0.01."
            nn.init.normal_(self.linear.weight, std=0.01)
            name = "linear"

        if out_features is None:
            out_features = [name]
        self._out_features = out_features
        assert len(self._out_features)
        children = [x[0] for x in self.named_children()]
        for out_feature in self._out_features:
            assert out_feature in children, "Available children: {}".format(", ".join(children))
        self.freeze(freeze_at)

    def forward(self, x):
        """
        Args:
            x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.

        Returns:
            dict[str->Tensor]: names and the corresponding features
        """
        assert x.dim() == 4, f"ResNet takes an input of shape (N, C, H, W). Got {x.shape} instead!"
        outputs = {}
        x = self.stem(x)
        if "stem" in self._out_features:
            outputs["stem"] = x
        for name, stage in zip(self.stage_names, self.stages):
            x = stage(x)
            if name in self._out_features:
                outputs[name] = x
        if self.num_classes is not None:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.linear(x)
            if "linear" in self._out_features:
                outputs["linear"] = x
        return outputs

    def output_shape(self):
        return {
            name: ShapeSpec(
                channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
            )
            for name in self._out_features
        }

    def freeze(self, freeze_at=0):
        """
        Freeze the first several stages of the ResNet. Commonly used in
        fine-tuning.

        Layers that produce the same feature map spatial size are defined as one
        "stage" by :paper:`FPN`.

        Args:
            freeze_at (int): number of stages to freeze.
                `1` means freezing the stem. `2` means freezing the stem and
                one residual stage, etc.

        Returns:
            nn.Module: this ResNet itself
        """
        if freeze_at >= 1:
            self.stem.freeze()
        for idx, stage in enumerate(self.stages, start=2):
            if freeze_at >= idx:
                for block in stage.children():
                    block.freeze()
        return self

    @staticmethod
    def make_stage(block_class, num_blocks, *, in_channels, out_channels, **kwargs):
        """
        Create a list of blocks of the same type that forms one ResNet stage.

        Args:
            block_class (type): a subclass of CNNBlockBase that's used to create all blocks in this
                stage. A module of this type must not change spatial resolution of inputs unless its
                stride != 1.
            num_blocks (int): number of blocks in this stage
            in_channels (int): input channels of the entire stage.
            out_channels (int): output channels of **every block** in the stage.
            kwargs: other arguments passed to the constructor of
                `block_class`. If the argument name is "xx_per_block", the
                argument is a list of values to be passed to each block in the
                stage. Otherwise, the same argument is passed to every block
                in the stage.

        Returns:
            list[CNNBlockBase]: a list of block module.

        Examples:
        ::
            stage = ResNet.make_stage(
                BottleneckBlock, 3, in_channels=16, out_channels=64,
                bottleneck_channels=16, num_groups=1,
                stride_per_block=[2, 1, 1],
                dilations_per_block=[1, 1, 2]
            )

        Usually, layers that produce the same feature map spatial size are defined as one
        "stage" (in :paper:`FPN`). Under such definition, ``stride_per_block[1:]`` should
        all be 1.
        """
        blocks = []
        for i in range(num_blocks):
            curr_kwargs = {}
            for k, v in kwargs.items():
                if k.endswith("_per_block"):
                    assert len(v) == num_blocks, (
                        f"Argument '{k}' of make_stage should have the "
                        f"same length as num_blocks={num_blocks}."
                    )
                    newk = k[: -len("_per_block")]
                    assert newk not in kwargs, f"Cannot call make_stage with both {k} and {newk}!"
                    curr_kwargs[newk] = v[i]
                else:
                    curr_kwargs[k] = v

            blocks.append(
                block_class(in_channels=in_channels, out_channels=out_channels, **curr_kwargs)
            )
            in_channels = out_channels
        return blocks

    @staticmethod
    def make_default_stages(depth, block_class=None, **kwargs):
        """
        Created list of ResNet stages from pre-defined depth (one of 18, 34, 50, 101, 152).
        If it doesn't create the ResNet variant you need, please use :meth:`make_stage`
        instead for fine-grained customization.

        Args:
            depth (int): depth of ResNet
            block_class (type): the CNN block class. Has to accept
                `bottleneck_channels` argument for depth > 50.
                By default it is BasicBlock or BottleneckBlock, based on the
                depth.
            kwargs:
                other arguments to pass to `make_stage`. Should not contain
                stride and channels, as they are predefined for each depth.

        Returns:
            list[list[CNNBlockBase]]: modules in all stages; see arguments of
                :class:`ResNet.__init__`.
        """
        num_blocks_per_stage = {
            18: [2, 2, 2, 2],
            34: [3, 4, 6, 3],
            50: [3, 4, 6, 3],
            101: [3, 4, 23, 3],
            152: [3, 8, 36, 3],
        }[depth]
        if block_class is None:
            block_class = BasicBlock if depth < 50 else BottleneckBlock
        if depth < 50:
            in_channels = [64, 64, 128, 256]
            out_channels = [64, 128, 256, 512]
        else:
            in_channels = [64, 256, 512, 1024]
            out_channels = [256, 512, 1024, 2048]
        ret = []
        for (n, s, i, o) in zip(num_blocks_per_stage, [1, 2, 2, 2], in_channels, out_channels):
            if depth >= 50:
                kwargs["bottleneck_channels"] = o // 4
            ret.append(
                ResNet.make_stage(
                    block_class=block_class,
                    num_blocks=n,
                    stride_per_block=[s] + [1] * (n - 1),
                    in_channels=i,
                    out_channels=o,
                    **kwargs,
                )
            )
        return ret


ResNetBlockBase = CNNBlockBase
"""
Alias for backward compatibiltiy.
"""


def make_stage(*args, **kwargs):
    """
    Deprecated alias for backward compatibiltiy.
    """
    return ResNet.make_stage(*args, **kwargs)


def _convert_ndarray_to_tensor(state_dict: Dict[str, Any]) -> None:
    """
    In-place convert all numpy arrays in the state_dict to torch tensor.
    Args:
        state_dict (dict): a state-dict to be loaded to the model.
            Will be modified.
    """
    # model could be an OrderedDict with _metadata attribute
    # (as returned by Pytorch's state_dict()). We should preserve these
    # properties.
    for k in list(state_dict.keys()):
        v = state_dict[k]
        if not isinstance(v, np.ndarray) and not isinstance(v, torch.Tensor):
            raise ValueError(
                "Unsupported type found in checkpoint! {}: {}".format(k, type(v))
            )
        if not isinstance(v, torch.Tensor):
            state_dict[k] = torch.from_numpy(v)


@register_backbone
def get_resnet_backbone(cfg):
    """
    Create a ResNet instance from config.

    Returns:
        ResNet: a :class:`ResNet` instance.
    """
    res_cfg = cfg['MODEL']['BACKBONE']['RESNETS']

    # need registration of new blocks/stems?
    norm = res_cfg['NORM']
    stem = BasicStem(
        in_channels=res_cfg['STEM_IN_CHANNELS'],
        out_channels=res_cfg['STEM_OUT_CHANNELS'],
        norm=norm,
    )

    # fmt: off
    freeze_at           = res_cfg['FREEZE_AT']
    out_features        = res_cfg['OUT_FEATURES']
    depth               = res_cfg['DEPTH']
    num_groups          = res_cfg['NUM_GROUPS']
    width_per_group     = res_cfg['WIDTH_PER_GROUP']
    bottleneck_channels = num_groups * width_per_group
    in_channels         = res_cfg['STEM_OUT_CHANNELS']
    out_channels        = res_cfg['RES2_OUT_CHANNELS']
    stride_in_1x1       = res_cfg['STRIDE_IN_1X1']
    res5_dilation       = res_cfg['RES5_DILATION']
    deform_on_per_stage = res_cfg['DEFORM_ON_PER_STAGE']
    deform_modulated    = res_cfg['DEFORM_MODULATED']
    deform_num_groups   = res_cfg['DEFORM_NUM_GROUPS']
    # fmt: on
    assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation)

    num_blocks_per_stage = {
        18: [2, 2, 2, 2],
        34: [3, 4, 6, 3],
        50: [3, 4, 6, 3],
        101: [3, 4, 23, 3],
        152: [3, 8, 36, 3],
    }[depth]

    if depth in [18, 34]:
        assert out_channels == 64, "Must set MODEL.RESNETS.RES2_OUT_CHANNELS = 64 for R18/R34"
        assert not any(
            deform_on_per_stage
        ), "MODEL.RESNETS.DEFORM_ON_PER_STAGE unsupported for R18/R34"
        assert res5_dilation == 1, "Must set MODEL.RESNETS.RES5_DILATION = 1 for R18/R34"
        assert num_groups == 1, "Must set MODEL.RESNETS.NUM_GROUPS = 1 for R18/R34"

    stages = []

    for idx, stage_idx in enumerate(range(2, 6)):
        # res5_dilation is used this way as a convention in R-FCN & Deformable Conv paper
        dilation = res5_dilation if stage_idx == 5 else 1
        first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2
        stage_kargs = {
            "num_blocks": num_blocks_per_stage[idx],
            "stride_per_block": [first_stride] + [1] * (num_blocks_per_stage[idx] - 1),
            "in_channels": in_channels,
            "out_channels": out_channels,
            "norm": norm,
        }
        # Use BasicBlock for R18 and R34.
        if depth in [18, 34]:
            stage_kargs["block_class"] = BasicBlock
        else:
            stage_kargs["bottleneck_channels"] = bottleneck_channels
            stage_kargs["stride_in_1x1"] = stride_in_1x1
            stage_kargs["dilation"] = dilation
            stage_kargs["num_groups"] = num_groups
            if deform_on_per_stage[idx]:
                stage_kargs["block_class"] = DeformBottleneckBlock
                stage_kargs["deform_modulated"] = deform_modulated
                stage_kargs["deform_num_groups"] = deform_num_groups
            else:
                stage_kargs["block_class"] = BottleneckBlock
        blocks = ResNet.make_stage(**stage_kargs)
        in_channels = out_channels
        out_channels *= 2
        bottleneck_channels *= 2
        stages.append(blocks)
    backbone = ResNet(stem, stages, out_features=out_features, freeze_at=freeze_at)

    if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True:
        filename = cfg['MODEL']['BACKBONE']['PRETRAINED']
        with PathManager.open(filename, "rb") as f:
            ckpt = pickle.load(f, encoding="latin1")['model']
        _convert_ndarray_to_tensor(ckpt)
        ckpt.pop('stem.fc.weight')
        ckpt.pop('stem.fc.bias')
        backbone.load_state_dict(ckpt)

    return backbone