Spaces:
Runtime error
Runtime error
File size: 11,822 Bytes
2aac0e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# Copyright (c) Facebook, Inc. and its affiliates.
import torch
from torch.nn import functional as F
from detectron2.layers import cat, shapes_to_tensor
from detectron2.structures import BitMasks, Boxes
# from ..layers import cat, shapes_to_tensor
# from ..structures import BitMasks, Boxes
"""
Shape shorthand in this module:
N: minibatch dimension size, i.e. the number of RoIs for instance segmenation or the
number of images for semantic segmenation.
R: number of ROIs, combined over all images, in the minibatch
P: number of points
"""
def point_sample(input, point_coords, **kwargs):
"""
A wrapper around :function:`torch.nn.functional.grid_sample` to support 3D point_coords tensors.
Unlike :function:`torch.nn.functional.grid_sample` it assumes `point_coords` to lie inside
[0, 1] x [0, 1] square.
Args:
input (Tensor): A tensor of shape (N, C, H, W) that contains features map on a H x W grid.
point_coords (Tensor): A tensor of shape (N, P, 2) or (N, Hgrid, Wgrid, 2) that contains
[0, 1] x [0, 1] normalized point coordinates.
Returns:
output (Tensor): A tensor of shape (N, C, P) or (N, C, Hgrid, Wgrid) that contains
features for points in `point_coords`. The features are obtained via bilinear
interplation from `input` the same way as :function:`torch.nn.functional.grid_sample`.
"""
add_dim = False
if point_coords.dim() == 3:
add_dim = True
point_coords = point_coords.unsqueeze(2)
output = F.grid_sample(input, 2.0 * point_coords - 1.0, **kwargs)
if add_dim:
output = output.squeeze(3)
return output
def generate_regular_grid_point_coords(R, side_size, device):
"""
Generate regular square grid of points in [0, 1] x [0, 1] coordinate space.
Args:
R (int): The number of grids to sample, one for each region.
side_size (int): The side size of the regular grid.
device (torch.device): Desired device of returned tensor.
Returns:
(Tensor): A tensor of shape (R, side_size^2, 2) that contains coordinates
for the regular grids.
"""
aff = torch.tensor([[[0.5, 0, 0.5], [0, 0.5, 0.5]]], device=device)
r = F.affine_grid(aff, torch.Size((1, 1, side_size, side_size)), align_corners=False)
return r.view(1, -1, 2).expand(R, -1, -1)
def get_uncertain_point_coords_with_randomness(
coarse_logits, uncertainty_func, num_points, oversample_ratio, importance_sample_ratio
):
"""
Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The unceratinties
are calculated for each point using 'uncertainty_func' function that takes point's logit
prediction as input.
See PointRend paper for details.
Args:
coarse_logits (Tensor): A tensor of shape (N, C, Hmask, Wmask) or (N, 1, Hmask, Wmask) for
class-specific or class-agnostic prediction.
uncertainty_func: A function that takes a Tensor of shape (N, C, P) or (N, 1, P) that
contains logit predictions for P points and returns their uncertainties as a Tensor of
shape (N, 1, P).
num_points (int): The number of points P to sample.
oversample_ratio (int): Oversampling parameter.
importance_sample_ratio (float): Ratio of points that are sampled via importnace sampling.
Returns:
point_coords (Tensor): A tensor of shape (N, P, 2) that contains the coordinates of P
sampled points.
"""
assert oversample_ratio >= 1
assert importance_sample_ratio <= 1 and importance_sample_ratio >= 0
num_boxes = coarse_logits.shape[0]
num_sampled = int(num_points * oversample_ratio)
point_coords = torch.rand(num_boxes, num_sampled, 2, device=coarse_logits.device, dtype=coarse_logits.dtype)
point_logits = point_sample(coarse_logits, point_coords, align_corners=False)
# It is crucial to calculate uncertainty based on the sampled prediction value for the points.
# Calculating uncertainties of the coarse predictions first and sampling them for points leads
# to incorrect results.
# To illustrate this: assume uncertainty_func(logits)=-abs(logits), a sampled point between
# two coarse predictions with -1 and 1 logits has 0 logits, and therefore 0 uncertainty value.
# However, if we calculate uncertainties for the coarse predictions first,
# both will have -1 uncertainty, and the sampled point will get -1 uncertainty.
point_uncertainties = uncertainty_func(point_logits)
num_uncertain_points = int(importance_sample_ratio * num_points)
num_random_points = num_points - num_uncertain_points
idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
shift = num_sampled * torch.arange(num_boxes, dtype=torch.long, device=coarse_logits.device)
idx += shift[:, None]
point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view(
num_boxes, num_uncertain_points, 2
)
if num_random_points > 0:
point_coords = cat(
[
point_coords,
torch.rand(num_boxes, num_random_points, 2, device=coarse_logits.device),
],
dim=1,
)
return point_coords
def get_uncertain_point_coords_on_grid(uncertainty_map, num_points):
"""
Find `num_points` most uncertain points from `uncertainty_map` grid.
Args:
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty
values for a set of points on a regular H x W grid.
num_points (int): The number of points P to select.
Returns:
point_indices (Tensor): A tensor of shape (N, P) that contains indices from
[0, H x W) of the most uncertain points.
point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized
coordinates of the most uncertain points from the H x W grid.
"""
R, _, H, W = uncertainty_map.shape
h_step = 1.0 / float(H)
w_step = 1.0 / float(W)
num_points = min(H * W, num_points)
point_indices = torch.topk(uncertainty_map.view(R, H * W), k=num_points, dim=1)[1]
point_coords = torch.zeros(R, num_points, 2, dtype=torch.float, device=uncertainty_map.device)
point_coords[:, :, 0] = w_step / 2.0 + (point_indices % W).to(torch.float) * w_step
point_coords[:, :, 1] = h_step / 2.0 + (point_indices // W).to(torch.float) * h_step
return point_indices, point_coords
def point_sample_fine_grained_features(features_list, feature_scales, boxes, point_coords):
"""
Get features from feature maps in `features_list` that correspond to specific point coordinates
inside each bounding box from `boxes`.
Args:
features_list (list[Tensor]): A list of feature map tensors to get features from.
feature_scales (list[float]): A list of scales for tensors in `features_list`.
boxes (list[Boxes]): A list of I Boxes objects that contain R_1 + ... + R_I = R boxes all
together.
point_coords (Tensor): A tensor of shape (R, P, 2) that contains
[0, 1] x [0, 1] box-normalized coordinates of the P sampled points.
Returns:
point_features (Tensor): A tensor of shape (R, C, P) that contains features sampled
from all features maps in feature_list for P sampled points for all R boxes in `boxes`.
point_coords_wrt_image (Tensor): A tensor of shape (R, P, 2) that contains image-level
coordinates of P points.
"""
cat_boxes = Boxes.cat(boxes)
num_boxes = [b.tensor.size(0) for b in boxes]
point_coords_wrt_image = get_point_coords_wrt_image(cat_boxes.tensor, point_coords)
split_point_coords_wrt_image = torch.split(point_coords_wrt_image, num_boxes)
point_features = []
for idx_img, point_coords_wrt_image_per_image in enumerate(split_point_coords_wrt_image):
point_features_per_image = []
for idx_feature, feature_map in enumerate(features_list):
h, w = feature_map.shape[-2:]
scale = shapes_to_tensor([w, h]) / feature_scales[idx_feature]
point_coords_scaled = point_coords_wrt_image_per_image / scale.to(feature_map.device)
point_features_per_image.append(
point_sample(
feature_map[idx_img].unsqueeze(0),
point_coords_scaled.unsqueeze(0),
align_corners=False,
)
.squeeze(0)
.transpose(1, 0)
)
point_features.append(cat(point_features_per_image, dim=1))
return cat(point_features, dim=0), point_coords_wrt_image
def get_point_coords_wrt_image(boxes_coords, point_coords):
"""
Convert box-normalized [0, 1] x [0, 1] point cooordinates to image-level coordinates.
Args:
boxes_coords (Tensor): A tensor of shape (R, 4) that contains bounding boxes.
coordinates.
point_coords (Tensor): A tensor of shape (R, P, 2) that contains
[0, 1] x [0, 1] box-normalized coordinates of the P sampled points.
Returns:
point_coords_wrt_image (Tensor): A tensor of shape (R, P, 2) that contains
image-normalized coordinates of P sampled points.
"""
with torch.no_grad():
point_coords_wrt_image = point_coords.clone()
point_coords_wrt_image[:, :, 0] = point_coords_wrt_image[:, :, 0] * (
boxes_coords[:, None, 2] - boxes_coords[:, None, 0]
)
point_coords_wrt_image[:, :, 1] = point_coords_wrt_image[:, :, 1] * (
boxes_coords[:, None, 3] - boxes_coords[:, None, 1]
)
point_coords_wrt_image[:, :, 0] += boxes_coords[:, None, 0]
point_coords_wrt_image[:, :, 1] += boxes_coords[:, None, 1]
return point_coords_wrt_image
def sample_point_labels(instances, point_coords):
"""
Sample point labels from ground truth mask given point_coords.
Args:
instances (list[Instances]): A list of N Instances, where N is the number of images
in the batch. So, i_th elememt of the list contains R_i objects and R_1 + ... + R_N is
equal to R. The ground-truth gt_masks in each instance will be used to compute labels.
points_coords (Tensor): A tensor of shape (R, P, 2), where R is the total number of
instances and P is the number of points for each instance. The coordinates are in
the absolute image pixel coordinate space, i.e. [0, H] x [0, W].
Returns:
Tensor: A tensor of shape (R, P) that contains the labels of P sampled points.
"""
with torch.no_grad():
gt_mask_logits = []
point_coords_splits = torch.split(
point_coords, [len(instances_per_image) for instances_per_image in instances]
)
for i, instances_per_image in enumerate(instances):
if len(instances_per_image) == 0:
continue
assert isinstance(
instances_per_image.gt_masks, BitMasks
), "Point head works with GT in 'bitmask' format. Set INPUT.MASK_FORMAT to 'bitmask'."
gt_bit_masks = instances_per_image.gt_masks.tensor
h, w = instances_per_image.gt_masks.image_size
scale = torch.tensor([w, h], dtype=torch.float, device=gt_bit_masks.device)
points_coord_grid_sample_format = point_coords_splits[i] / scale
gt_mask_logits.append(
point_sample(
gt_bit_masks.to(torch.float32).unsqueeze(1),
points_coord_grid_sample_format,
align_corners=False,
).squeeze(1)
)
point_labels = cat(gt_mask_logits)
return point_labels
|