Spaces:
Runtime error
Runtime error
File size: 13,628 Bytes
2aac0e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
# -*- coding: utf-8 -*-
from detectron2.config import CfgNode as CN
def add_glee_config(cfg):
"""
Add config for DETR.
"""
cfg.FIND_UNUSED_PARAMETERS = True
cfg.MODEL.MAX_CATEGORY_LEN = 100
cfg.MODEL.PSEUDO_VIDEO = False
cfg.MODEL.FREEZE_WHOLE = False
cfg.MODEL.CONTRAS_MEAN = False
cfg.MODEL.CROSS_TRACK = False
cfg.MODEL.TRACK_VERSION = 'v3'
cfg.INPUT.SAMPLING_FRAME_NUM = 1
cfg.INPUT.SAMPLING_FRAME_RANGE = 10
cfg.INPUT.SAMPLING_INTERVAL = 1
cfg.INPUT.SAMPLING_FRAME_SHUFFLE = False
cfg.INPUT.AUGMENTATIONS = [] # "brightness", "contrast", "saturation", "rotation"
cfg.INPUT.DATASET_MAPPER_NAME = None
cfg.DATALOADER.DATASET_RATIO = [1, 1]
cfg.DATALOADER.USE_DIFF_BS_SIZE = True
cfg.DATALOADER.DATASET_BS = [2, 2]
cfg.DATALOADER.DATASET_FILTERS = [True, True]
cfg.DATALOADER.USE_RFS = [False, False]
cfg.DATALOADER.MULTI_DATASET_GROUPING = True
cfg.DATALOADER.DATASET_ANN = ['image']
cfg.INPUT.SIZE_DIVISIBILITY = -1
cfg.DATALOADER.DATASET_RATIO = [1, 1]
cfg.DATALOADER.USE_DIFF_BS_SIZE = True
cfg.DATALOADER.DATASET_BS = [2, 2]
cfg.DATALOADER.USE_RFS = [False, False]
cfg.DATALOADER.MULTI_DATASET_GROUPING = True
cfg.DATALOADER.DATASET_ANN = ['box', 'box']
# Allow different datasets to use different input resolutions
cfg.INPUT.MIN_SIZE_TRAIN_MULTI = [(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), (320, 352, 392, 416, 448, 480, 512, 544, 576, 608, 640)]
cfg.INPUT.MAX_SIZE_TRAIN_MULTI = [1333, 768]
# MaskDINO model config
cfg.MODEL.MaskDINO = CN()
cfg.MODEL.MaskDINO.LEARN_TGT = False
# loss
cfg.MODEL.MaskDINO.PANO_BOX_LOSS = False
cfg.MODEL.MaskDINO.SEMANTIC_CE_LOSS = False
cfg.MODEL.MaskDINO.DEEP_SUPERVISION = True
cfg.MODEL.MaskDINO.NO_OBJECT_WEIGHT = 0.1
cfg.MODEL.MaskDINO.CLASS_WEIGHT = 4.0
cfg.MODEL.MaskDINO.DICE_WEIGHT = 5.0
cfg.MODEL.MaskDINO.MASK_WEIGHT = 5.0
cfg.MODEL.MaskDINO.BOX_WEIGHT = 5.
cfg.MODEL.MaskDINO.GIOU_WEIGHT = 2.
# cost weight
cfg.MODEL.MaskDINO.COST_CLASS_WEIGHT = 4.0
cfg.MODEL.MaskDINO.COST_DICE_WEIGHT = 5.0
cfg.MODEL.MaskDINO.COST_MASK_WEIGHT = 5.0
cfg.MODEL.MaskDINO.COST_BOX_WEIGHT = 5.
cfg.MODEL.MaskDINO.COST_GIOU_WEIGHT = 2.
# transformer config
cfg.MODEL.MaskDINO.NHEADS = 8
cfg.MODEL.MaskDINO.DROPOUT = 0.1
cfg.MODEL.MaskDINO.DIM_FEEDFORWARD = 2048
cfg.MODEL.MaskDINO.ENC_LAYERS = 0
cfg.MODEL.MaskDINO.DEC_LAYERS = 6
cfg.MODEL.MaskDINO.INITIAL_PRED = True
cfg.MODEL.MaskDINO.PRE_NORM = False
cfg.MODEL.MaskDINO.BOX_LOSS = True
cfg.MODEL.MaskDINO.HIDDEN_DIM = 256
cfg.MODEL.MaskDINO.NUM_OBJECT_QUERIES = 100
cfg.MODEL.MaskDINO.ENFORCE_INPUT_PROJ = False
cfg.MODEL.MaskDINO.TWO_STAGE = True
cfg.MODEL.MaskDINO.INITIALIZE_BOX_TYPE = 'no' # ['no', 'bitmask', 'mask2box']
cfg.MODEL.MaskDINO.DN="seg"
cfg.MODEL.MaskDINO.DN_NOISE_SCALE=0.4
cfg.MODEL.MaskDINO.DN_NUM=100
cfg.MODEL.MaskDINO.PRED_CONV=False
cfg.MODEL.MaskDINO.EVAL_FLAG = 1
# MSDeformAttn encoder configs
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["res3", "res4", "res5"]
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_POINTS = 4
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_HEADS = 8
cfg.MODEL.SEM_SEG_HEAD.DIM_FEEDFORWARD = 2048
cfg.MODEL.SEM_SEG_HEAD.NUM_FEATURE_LEVELS = 3
cfg.MODEL.SEM_SEG_HEAD.TOTAL_NUM_FEATURE_LEVELS = 4
cfg.MODEL.SEM_SEG_HEAD.FEATURE_ORDER = 'high2low' # ['low2high', 'high2low'] high2low: from high level to low level
#####################
# MaskDINO inference config
cfg.MODEL.MaskDINO.TEST = CN()
cfg.MODEL.MaskDINO.TEST.TEST_FOUCUS_ON_BOX = False
cfg.MODEL.MaskDINO.TEST.SEMANTIC_ON = True
cfg.MODEL.MaskDINO.TEST.INSTANCE_ON = False
cfg.MODEL.MaskDINO.TEST.PANOPTIC_ON = False
cfg.MODEL.MaskDINO.TEST.OBJECT_MASK_THRESHOLD = 0.0
cfg.MODEL.MaskDINO.TEST.OVERLAP_THRESHOLD = 0.0
cfg.MODEL.MaskDINO.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE = False
cfg.MODEL.MaskDINO.TEST.PANO_TRANSFORM_EVAL = True
cfg.MODEL.MaskDINO.TEST.PANO_TEMPERATURE = 0.06
# cfg.MODEL.MaskDINO.TEST.EVAL_FLAG = 1
# Sometimes `backbone.size_divisibility` is set to 0 for some backbone (e.g. ResNet)
# you can use this config to override
cfg.MODEL.MaskDINO.SIZE_DIVISIBILITY = 32
# pixel decoder config
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
# adding transformer in pixel decoder
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 0
# pixel decoder
cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME = "MaskDINOEncoder"
# transformer module
cfg.MODEL.MaskDINO.TRANSFORMER_DECODER_NAME = "MaskDINODecoder"
# LSJ aug
cfg.INPUT.IMAGE_SIZE = 1024
cfg.INPUT.MIN_SCALE = 0.1
cfg.INPUT.MAX_SCALE = 2.0
# point loss configs
# Number of points sampled during training for a mask point head.
cfg.MODEL.MaskDINO.TRAIN_NUM_POINTS = 112 * 112
# Oversampling parameter for PointRend point sampling during training. Parameter `k` in the
# original paper.
cfg.MODEL.MaskDINO.OVERSAMPLE_RATIO = 3.0
# Importance sampling parameter for PointRend point sampling during training. Parametr `beta` in
# the original paper.
cfg.MODEL.MaskDINO.IMPORTANCE_SAMPLE_RATIO = 0.75
cfg.MODEL.DIM_PROJ = 256
cfg.MODEL.VISUAL_PROMPT = False
cfg.MODEL.TEXT = CN()
cfg.MODEL.TEXT.ARCH = 'vlpencoder'
cfg.MODEL.TEXT.NAME= 'transformer'
cfg.MODEL.TEXT.TOKENIZER= 'clip'
cfg.MODEL.TEXT.CONTEXT_LENGTH= 77 # 77
cfg.MODEL.TEXT.WIDTH= 512
cfg.MODEL.TEXT.HEADS= 8
cfg.MODEL.TEXT.LAYERS= 12 # 6
cfg.MODEL.TEXT.AUTOGRESSIVE= True
cfg.MODEL.LANGUAGE_BACKBONE = CN()
cfg.MODEL.LANGUAGE_BACKBONE.USE_CHECKPOINT = False
cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE = "bert-base-uncased"
cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE = "bert-base-uncased"
cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM = 768
cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN = 77 # max length of the tokenized captions.
cfg.MODEL.LANGUAGE_BACKBONE.N_LAYERS = 1
# cfg.MODEL.LANGUAGE_BACKBONE.UNUSED_TOKEN = 106
# cfg.MODEL.LANGUAGE_BACKBONE.MASK_SPECIAL = False
cfg.MODEL.LANGUAGE_BACKBONE.PAD_MAX = True
cfg.MODEL.ENCODER = CN()
cfg.MODEL.ENCODER.NAME= 'transformer_encoder_fpn'
cfg.MODEL.ENCODER.IGNORE_VALUE= 255
cfg.MODEL.ENCODER.NUM_CLASSES= 133
cfg.MODEL.ENCODER.LOSS_WEIGHT= 1.0
cfg.MODEL.ENCODER.CONVS_DIM= 512
cfg.MODEL.ENCODER.MASK_DIM= 512
cfg.MODEL.ENCODER.NORM= "GN"
cfg.MODEL.ENCODER.IN_FEATURES= ["res2", "res3", "res4", "res5"]
cfg.MODEL.ENCODER.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES= ["res3", "res4", "res5"]
cfg.MODEL.ENCODER.COMMON_STRIDE= 4
cfg.MODEL.ENCODER.TRANSFORMER_ENC_LAYERS= 6
cfg.MODEL.DECODER = CN()
cfg.MODEL.DECODER.TRANSFORMER_IN_FEATURE= "multi_scale_pixel_decoder"
cfg.MODEL.DECODER.MASK = True
# DETECTION= False
# SPATIAL=
# ENABLED= True
# GROUNDING=
# ENABLED= False
# MAX_LEN= 5
# TEXT_WEIGHT= 2.0
# CLASS_WEIGHT= 0.5
# VISUAL=
# ENABLED= False
# AUDIO=
# ENABLED= False
# OPENIMAGE=
# ENABLED= False
# NEGATIVE_SAMPLES= 5
# GROUNDING=
# ENABLED= False
# MAX_LEN= 5
# CAPTION=
# ENABLED= False
# PHRASE_PROB= 0.5
# SIM_THRES= 0.95
cfg.MODEL.DECODER.HIDDEN_DIM= 512
cfg.MODEL.DECODER.NUM_OBJECT_QUERIES= 101
cfg.MODEL.DECODER.NHEADS= 8
cfg.MODEL.DECODER.DROPOUT= 0.0
cfg.MODEL.DECODER.DIM_FEEDFORWARD= 2048
cfg.MODEL.DECODER.MAX_SPATIAL_LEN= [512, 512, 512, 512]
cfg.MODEL.DECODER.PRE_NORM= False
cfg.MODEL.DECODER.ENFORCE_INPUT_PROJ= False
cfg.MODEL.DECODER.SIZE_DIVISIBILITY= 32
cfg.MODEL.DECODER.TRAIN_NUM_POINTS= 12544
cfg.MODEL.DECODER.OVERSAMPLE_RATIO= 3.0
cfg.MODEL.DECODER.IMPORTANCE_SAMPLE_RATIO= 0.75
cfg.MODEL.DECODER.DEC_LAYERS= 10 # 9 decoder layers, add one for the loss on learnable query
cfg.MODEL.DECODER.TOP_GROUNDING_LAYERS= 10
cfg.MODEL.DECODER.TOP_CAPTION_LAYERS= 10
cfg.MODEL.DECODER.TOP_SPATIAL_LAYERS= 10
cfg.MODEL.DECODER.TOP_OPENIMAGE_LAYERS= 10
# TEST=
# SEMANTIC_ON= True
# INSTANCE_ON= True
# PANOPTIC_ON= True
# OVERLAP_THRESHOLD= 0.8
# OBJECT_MASK_THRESHOLD= 0.4
# SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE= false
# DETECTIONS_PER_IMAGE= 100
cfg.ATTENTION_ARCH = CN()
# cfg.ATTENTION_ARCH.VARIABLE={
# 'queries': ['object'],
# 'tokens': ['grounding', 'spatial', 'visual', 'audio']}
# SELF_ATTENTION:
# queries:
# object: ['queries_object', 'tokens_grounding', 'tokens_spatial', 'tokens_visual', 'tokens_audio']
# tokens:
# grounding: ['queries_object', 'tokens_grounding']
# spatial: ['tokens_spatial']
# visual: ['tokens_visual']
# audio: ['queries_object', 'tokens_audio']
# CROSS_ATTENTION:
# queries:
# object: True
# tokens:
# grounding: False
# spatial: False
# visual: False
# audio: False
# MASKING: ['tokens_spatial', 'tokens_grounding', 'tokens_visual', 'tokens_audio']
# DUPLICATION:
# queries:
# grounding: 'queries_object'
# spatial: 'queries_object'
# SPATIAL_MEMORIES: 32
cfg.SOLVER.OPTIMIZER = "ADAMW"
cfg.SOLVER.BACKBONE_MULTIPLIER = 0.1
cfg.SOLVER.TEXTENCODER_MULTIPLIER = 1.0
cfg.SOLVER.LR_DECAY_RATE = None
cfg.SOLVER.LR_DECAY_RATE_NUM_LAYERS = None
## support Swin backbone
cfg.MODEL.SWIN = CN()
cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE = 224
cfg.MODEL.SWIN.PATCH_SIZE = 4
cfg.MODEL.SWIN.EMBED_DIM = 96
cfg.MODEL.SWIN.DEPTHS = [2, 2, 6, 2]
cfg.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24]
cfg.MODEL.SWIN.WINDOW_SIZE = 7
cfg.MODEL.SWIN.MLP_RATIO = 4.0
cfg.MODEL.SWIN.QKV_BIAS = True
cfg.MODEL.SWIN.QK_SCALE = None
cfg.MODEL.SWIN.DROP_RATE = 0.0
cfg.MODEL.SWIN.ATTN_DROP_RATE = 0.0
cfg.MODEL.SWIN.DROP_PATH_RATE = 0.3
cfg.MODEL.SWIN.APE = False
cfg.MODEL.SWIN.PATCH_NORM = True
cfg.MODEL.SWIN.OUT_FEATURES = ["res2", "res3", "res4", "res5"]
cfg.MODEL.SWIN.USE_CHECKPOINT = False
cfg.MODEL.SWIN.PRETRAINED_WEIGHT = None
# support InterImage backbone
cfg.MODEL.INTERNIMAGE = CN() # large as base
#### large
cfg.MODEL.INTERNIMAGE.PRETRAINED_WEIGHT = None
cfg.MODEL.INTERNIMAGE.CORE_OP = "DCNv3"
cfg.MODEL.INTERNIMAGE.CHANNELS = 160
cfg.MODEL.INTERNIMAGE.DEPTHS = [5, 5, 22, 5]
cfg.MODEL.INTERNIMAGE.GROUPS =[10, 20, 40, 80]
cfg.MODEL.INTERNIMAGE.MLP_RATIO =4.
cfg.MODEL.INTERNIMAGE.DROP_PATH_RATE =0.0
cfg.MODEL.INTERNIMAGE.NORM_LAYER = "LN"
cfg.MODEL.INTERNIMAGE.LAYER_SCALE = 1.0
cfg.MODEL.INTERNIMAGE.OFFSET_SCALE = 2.0
cfg.MODEL.INTERNIMAGE.POST_NORM = True
cfg.MODEL.INTERNIMAGE.WITH_CP = False
cfg.MODEL.INTERNIMAGE.OUT_IINDICES = (0, 1, 2, 3)
cfg.MODEL.INTERNIMAGE.DW_KERNEL_SIZE = None
cfg.MODEL.INTERNIMAGE.RES_POST_NORM = False
cfg.MODEL.INTERNIMAGE.LEVEL2_POST_NORM = False
cfg.MODEL.INTERNIMAGE.LEVEL2_POST_NORM_BLOCK_IDS = None
cfg.MODEL.INTERNIMAGE.CENTER_FEATURE_SCALE = False
### huge
# cfg.MODEL.INTERNIMAGE.PRETRAINED_WEIGHT = None
# cfg.MODEL.INTERNIMAGE.CORE_OP = "DCNv3"
# cfg.MODEL.INTERNIMAGE.CHANNELS = 320
# cfg.MODEL.INTERNIMAGE.DEPTHS = [6, 6, 32, 6]
# cfg.MODEL.INTERNIMAGE.GROUPS = [10, 20, 40, 80]
# cfg.MODEL.INTERNIMAGE.MLP_RATIO =4.
# cfg.MODEL.INTERNIMAGE.DROP_PATH_RATE = 0.5
# cfg.MODEL.INTERNIMAGE.NORM_LAYER = "LN"
# cfg.MODEL.INTERNIMAGE.LAYER_SCALE = None
# cfg.MODEL.INTERNIMAGE.OFFSET_SCALE = 1.0
# cfg.MODEL.INTERNIMAGE.POST_NORM = False
# cfg.MODEL.INTERNIMAGE.WITH_CP = False
# cfg.MODEL.INTERNIMAGE.OUT_IINDICES = (0, 1, 2, 3)
# cfg.MODEL.INTERNIMAGE.DW_KERNEL_SIZE = 5
# cfg.MODEL.INTERNIMAGE.RES_POST_NORM = True
# cfg.MODEL.INTERNIMAGE.LEVEL2_POST_NORM = True
# cfg.MODEL.INTERNIMAGE.LEVEL2_POST_NORM_BLOCK_IDS = [5, 11, 17, 23, 29]
# cfg.MODEL.INTERNIMAGE.CENTER_FEATURE_SCALE = True
# support EVA02 backbone
cfg.MODEL.EVA02 = CN() # large as base
#### large
cfg.MODEL.EVA02.PRETRAINED_WEIGHT = None
cfg.MODEL.EVA02.IMAGE_SIZE = 1536
cfg.MODEL.EVA02.PATCH_SIZE = 16
cfg.MODEL.EVA02.WINDOW_SIZE = 16
cfg.MODEL.EVA02.DMBED_DIM =1024
cfg.MODEL.EVA02.DEPTH = 24
cfg.MODEL.EVA02.NUM_HEADS = 16
cfg.MODEL.EVA02.MLP_RATIO = 4*2/3
cfg.MODEL.EVA02.DROP_PATH_RATE = 0.3
cfg.MODEL.EVA02.CHECKPOINT = True
cfg.MODEL.EVA02.WINDOW_BLOCK_INDEXES = [0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22]
# support EVA01 backbone
cfg.MODEL.EVA01 = CN() # large as base
#### large
cfg.MODEL.EVA01.PRETRAINED_WEIGHT = None
cfg.MODEL.EVA01.BEIT_LIKE_QKV_BIAS = True
cfg.MODEL.EVA01.BEIT_LIKE_GAMMA = False
cfg.MODEL.EVA01.FREEZE_PATH_EMBED = True
cfg.MODEL.EVA01.IMAGE_SIZE = 1280 # only for correct dim in pos embed
cfg.MODEL.EVA01.PATCH_SIZE = 16
cfg.MODEL.EVA01.WINDOW_SIZE = 16
cfg.MODEL.EVA01.DMBED_DIM = 1408
cfg.MODEL.EVA01.DEPTH = 40
cfg.MODEL.EVA01.NUM_HEADS = 16
cfg.MODEL.EVA01.MLP_RATIO = 6144 / 1408
cfg.MODEL.EVA01.DROP_PATH_RATE = 0.6
cfg.MODEL.EVA01.WINDOW_BLOCK_INDEXES = [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30, 32, 33, 34, 36, 37, 38]
|