File size: 13,628 Bytes
2aac0e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# -*- coding: utf-8 -*-
from detectron2.config import CfgNode as CN


def add_glee_config(cfg):
    """
    Add config for DETR.
    """
    
    cfg.FIND_UNUSED_PARAMETERS = True
    cfg.MODEL.MAX_CATEGORY_LEN = 100
    cfg.MODEL.PSEUDO_VIDEO = False
    cfg.MODEL.FREEZE_WHOLE = False
    cfg.MODEL.CONTRAS_MEAN = False
    cfg.MODEL.CROSS_TRACK = False
    cfg.MODEL.TRACK_VERSION = 'v3'
    
    cfg.INPUT.SAMPLING_FRAME_NUM = 1
    cfg.INPUT.SAMPLING_FRAME_RANGE = 10
    cfg.INPUT.SAMPLING_INTERVAL = 1
    cfg.INPUT.SAMPLING_FRAME_SHUFFLE = False
    cfg.INPUT.AUGMENTATIONS = [] # "brightness", "contrast", "saturation", "rotation"
    cfg.INPUT.DATASET_MAPPER_NAME = None

    cfg.DATALOADER.DATASET_RATIO = [1, 1]
    cfg.DATALOADER.USE_DIFF_BS_SIZE = True
    cfg.DATALOADER.DATASET_BS = [2, 2]
    cfg.DATALOADER.DATASET_FILTERS = [True, True]
    cfg.DATALOADER.USE_RFS = [False, False]
    cfg.DATALOADER.MULTI_DATASET_GROUPING = True
    cfg.DATALOADER.DATASET_ANN = ['image']


    cfg.INPUT.SIZE_DIVISIBILITY = -1

    cfg.DATALOADER.DATASET_RATIO = [1, 1]
    cfg.DATALOADER.USE_DIFF_BS_SIZE = True
    cfg.DATALOADER.DATASET_BS = [2, 2]
    cfg.DATALOADER.USE_RFS = [False, False]
    cfg.DATALOADER.MULTI_DATASET_GROUPING = True
    cfg.DATALOADER.DATASET_ANN = ['box', 'box']

    # Allow different datasets to use different input resolutions
    cfg.INPUT.MIN_SIZE_TRAIN_MULTI = [(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), (320, 352, 392, 416, 448, 480, 512, 544, 576, 608, 640)]
    cfg.INPUT.MAX_SIZE_TRAIN_MULTI = [1333, 768]


    # MaskDINO model config
    cfg.MODEL.MaskDINO = CN()
    cfg.MODEL.MaskDINO.LEARN_TGT = False

    # loss
    cfg.MODEL.MaskDINO.PANO_BOX_LOSS = False
    cfg.MODEL.MaskDINO.SEMANTIC_CE_LOSS = False
    cfg.MODEL.MaskDINO.DEEP_SUPERVISION = True
    cfg.MODEL.MaskDINO.NO_OBJECT_WEIGHT = 0.1
    cfg.MODEL.MaskDINO.CLASS_WEIGHT = 4.0
    cfg.MODEL.MaskDINO.DICE_WEIGHT = 5.0
    cfg.MODEL.MaskDINO.MASK_WEIGHT = 5.0
    cfg.MODEL.MaskDINO.BOX_WEIGHT = 5.
    cfg.MODEL.MaskDINO.GIOU_WEIGHT = 2.

    # cost weight
    cfg.MODEL.MaskDINO.COST_CLASS_WEIGHT = 4.0
    cfg.MODEL.MaskDINO.COST_DICE_WEIGHT = 5.0
    cfg.MODEL.MaskDINO.COST_MASK_WEIGHT = 5.0
    cfg.MODEL.MaskDINO.COST_BOX_WEIGHT = 5.
    cfg.MODEL.MaskDINO.COST_GIOU_WEIGHT = 2.

    # transformer config
    cfg.MODEL.MaskDINO.NHEADS = 8
    cfg.MODEL.MaskDINO.DROPOUT = 0.1
    cfg.MODEL.MaskDINO.DIM_FEEDFORWARD = 2048
    cfg.MODEL.MaskDINO.ENC_LAYERS = 0
    cfg.MODEL.MaskDINO.DEC_LAYERS = 6
    cfg.MODEL.MaskDINO.INITIAL_PRED = True
    cfg.MODEL.MaskDINO.PRE_NORM = False
    cfg.MODEL.MaskDINO.BOX_LOSS = True
    cfg.MODEL.MaskDINO.HIDDEN_DIM = 256
    cfg.MODEL.MaskDINO.NUM_OBJECT_QUERIES = 100

    cfg.MODEL.MaskDINO.ENFORCE_INPUT_PROJ = False
    cfg.MODEL.MaskDINO.TWO_STAGE = True
    cfg.MODEL.MaskDINO.INITIALIZE_BOX_TYPE = 'no'  # ['no', 'bitmask', 'mask2box']
    cfg.MODEL.MaskDINO.DN="seg"
    cfg.MODEL.MaskDINO.DN_NOISE_SCALE=0.4
    cfg.MODEL.MaskDINO.DN_NUM=100
    cfg.MODEL.MaskDINO.PRED_CONV=False

    cfg.MODEL.MaskDINO.EVAL_FLAG = 1

    # MSDeformAttn encoder configs
    cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["res3", "res4", "res5"]
    cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_POINTS = 4
    cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_HEADS = 8
    cfg.MODEL.SEM_SEG_HEAD.DIM_FEEDFORWARD = 2048
    cfg.MODEL.SEM_SEG_HEAD.NUM_FEATURE_LEVELS = 3
    cfg.MODEL.SEM_SEG_HEAD.TOTAL_NUM_FEATURE_LEVELS = 4
    cfg.MODEL.SEM_SEG_HEAD.FEATURE_ORDER = 'high2low'  # ['low2high', 'high2low'] high2low: from high level to low level

    #####################

    # MaskDINO inference config
    cfg.MODEL.MaskDINO.TEST = CN()
    cfg.MODEL.MaskDINO.TEST.TEST_FOUCUS_ON_BOX = False
    cfg.MODEL.MaskDINO.TEST.SEMANTIC_ON = True
    cfg.MODEL.MaskDINO.TEST.INSTANCE_ON = False
    cfg.MODEL.MaskDINO.TEST.PANOPTIC_ON = False
    cfg.MODEL.MaskDINO.TEST.OBJECT_MASK_THRESHOLD = 0.0
    cfg.MODEL.MaskDINO.TEST.OVERLAP_THRESHOLD = 0.0
    cfg.MODEL.MaskDINO.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE = False
    cfg.MODEL.MaskDINO.TEST.PANO_TRANSFORM_EVAL = True
    cfg.MODEL.MaskDINO.TEST.PANO_TEMPERATURE = 0.06
    # cfg.MODEL.MaskDINO.TEST.EVAL_FLAG = 1

    # Sometimes `backbone.size_divisibility` is set to 0 for some backbone (e.g. ResNet)
    # you can use this config to override
    cfg.MODEL.MaskDINO.SIZE_DIVISIBILITY = 32

    # pixel decoder config
    cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
    # adding transformer in pixel decoder
    cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 0
    # pixel decoder
    cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME = "MaskDINOEncoder"

    # transformer module
    cfg.MODEL.MaskDINO.TRANSFORMER_DECODER_NAME = "MaskDINODecoder"

    # LSJ aug
    cfg.INPUT.IMAGE_SIZE = 1024
    cfg.INPUT.MIN_SCALE = 0.1
    cfg.INPUT.MAX_SCALE = 2.0

    # point loss configs
    # Number of points sampled during training for a mask point head.
    cfg.MODEL.MaskDINO.TRAIN_NUM_POINTS = 112 * 112
    # Oversampling parameter for PointRend point sampling during training. Parameter `k` in the
    # original paper.
    cfg.MODEL.MaskDINO.OVERSAMPLE_RATIO = 3.0
    # Importance sampling parameter for PointRend point sampling during training. Parametr `beta` in
    # the original paper.
    cfg.MODEL.MaskDINO.IMPORTANCE_SAMPLE_RATIO = 0.75




    cfg.MODEL.DIM_PROJ = 256
    cfg.MODEL.VISUAL_PROMPT = False
    cfg.MODEL.TEXT = CN()
    cfg.MODEL.TEXT.ARCH = 'vlpencoder'
    cfg.MODEL.TEXT.NAME= 'transformer'
    cfg.MODEL.TEXT.TOKENIZER= 'clip'
    cfg.MODEL.TEXT.CONTEXT_LENGTH= 77 # 77
    cfg.MODEL.TEXT.WIDTH= 512
    cfg.MODEL.TEXT.HEADS= 8
    cfg.MODEL.TEXT.LAYERS= 12 # 6
    cfg.MODEL.TEXT.AUTOGRESSIVE= True



    cfg.MODEL.LANGUAGE_BACKBONE = CN()
    cfg.MODEL.LANGUAGE_BACKBONE.USE_CHECKPOINT = False
    cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE = "bert-base-uncased"
    cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE = "bert-base-uncased"
    cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM = 768
    cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN = 77 # max length of the tokenized captions. 
    cfg.MODEL.LANGUAGE_BACKBONE.N_LAYERS = 1
    # cfg.MODEL.LANGUAGE_BACKBONE.UNUSED_TOKEN = 106
    # cfg.MODEL.LANGUAGE_BACKBONE.MASK_SPECIAL = False
    cfg.MODEL.LANGUAGE_BACKBONE.PAD_MAX = True





    cfg.MODEL.ENCODER = CN()  
    cfg.MODEL.ENCODER.NAME= 'transformer_encoder_fpn'
    cfg.MODEL.ENCODER.IGNORE_VALUE= 255
    cfg.MODEL.ENCODER.NUM_CLASSES= 133
    cfg.MODEL.ENCODER.LOSS_WEIGHT= 1.0
    cfg.MODEL.ENCODER.CONVS_DIM= 512
    cfg.MODEL.ENCODER.MASK_DIM= 512
    cfg.MODEL.ENCODER.NORM= "GN"
    cfg.MODEL.ENCODER.IN_FEATURES= ["res2", "res3", "res4", "res5"]
    cfg.MODEL.ENCODER.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES= ["res3", "res4", "res5"]
    cfg.MODEL.ENCODER.COMMON_STRIDE= 4
    cfg.MODEL.ENCODER.TRANSFORMER_ENC_LAYERS= 6

    cfg.MODEL.DECODER = CN()  
    cfg.MODEL.DECODER.TRANSFORMER_IN_FEATURE= "multi_scale_pixel_decoder"
    cfg.MODEL.DECODER.MASK  = True
    # DETECTION= False
    # SPATIAL=
    #   ENABLED= True
    # GROUNDING=
    #   ENABLED= False
    #   MAX_LEN= 5
    #   TEXT_WEIGHT= 2.0
    #   CLASS_WEIGHT= 0.5
    # VISUAL=
    #   ENABLED= False
    # AUDIO=
    #   ENABLED= False
    # OPENIMAGE=
    #   ENABLED= False
    #   NEGATIVE_SAMPLES= 5
    #   GROUNDING=
    #     ENABLED= False
    #     MAX_LEN= 5
    # CAPTION=
    #   ENABLED= False
    #   PHRASE_PROB= 0.5
    #   SIM_THRES= 0.95
    cfg.MODEL.DECODER.HIDDEN_DIM= 512
    cfg.MODEL.DECODER.NUM_OBJECT_QUERIES= 101
    cfg.MODEL.DECODER.NHEADS= 8
    cfg.MODEL.DECODER.DROPOUT= 0.0
    cfg.MODEL.DECODER.DIM_FEEDFORWARD= 2048
    cfg.MODEL.DECODER.MAX_SPATIAL_LEN= [512, 512, 512, 512]
    cfg.MODEL.DECODER.PRE_NORM= False
    cfg.MODEL.DECODER.ENFORCE_INPUT_PROJ= False
    cfg.MODEL.DECODER.SIZE_DIVISIBILITY= 32
    cfg.MODEL.DECODER.TRAIN_NUM_POINTS= 12544
    cfg.MODEL.DECODER.OVERSAMPLE_RATIO= 3.0
    cfg.MODEL.DECODER.IMPORTANCE_SAMPLE_RATIO= 0.75
    cfg.MODEL.DECODER.DEC_LAYERS= 10  # 9 decoder layers, add one for the loss on learnable query
    cfg.MODEL.DECODER.TOP_GROUNDING_LAYERS= 10
    cfg.MODEL.DECODER.TOP_CAPTION_LAYERS= 10
    cfg.MODEL.DECODER.TOP_SPATIAL_LAYERS= 10
    cfg.MODEL.DECODER.TOP_OPENIMAGE_LAYERS= 10
    # TEST=
    #   SEMANTIC_ON= True
    #   INSTANCE_ON= True
    #   PANOPTIC_ON= True
    #   OVERLAP_THRESHOLD= 0.8
    #   OBJECT_MASK_THRESHOLD= 0.4
    #   SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE= false
    #   DETECTIONS_PER_IMAGE= 100

    cfg.ATTENTION_ARCH = CN()
    # cfg.ATTENTION_ARCH.VARIABLE={
    # 'queries': ['object'],
    # 'tokens': ['grounding', 'spatial', 'visual', 'audio']}

#   SELF_ATTENTION:
#     queries:
#       object: ['queries_object', 'tokens_grounding', 'tokens_spatial', 'tokens_visual', 'tokens_audio']
#     tokens:
#       grounding: ['queries_object', 'tokens_grounding']
#       spatial: ['tokens_spatial']
#       visual: ['tokens_visual']
#       audio: ['queries_object', 'tokens_audio']
#   CROSS_ATTENTION:
#     queries:
#       object: True
#     tokens:
#       grounding: False
#       spatial: False
#       visual: False
#       audio: False
#   MASKING: ['tokens_spatial', 'tokens_grounding', 'tokens_visual', 'tokens_audio']
#   DUPLICATION:
#     queries:
#       grounding: 'queries_object'
#       spatial: 'queries_object'
#   SPATIAL_MEMORIES: 32






    cfg.SOLVER.OPTIMIZER = "ADAMW"
    cfg.SOLVER.BACKBONE_MULTIPLIER = 0.1
    cfg.SOLVER.TEXTENCODER_MULTIPLIER = 1.0
    cfg.SOLVER.LR_DECAY_RATE = None
    cfg.SOLVER.LR_DECAY_RATE_NUM_LAYERS = None


    ## support Swin backbone
    cfg.MODEL.SWIN = CN()
    cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE = 224
    cfg.MODEL.SWIN.PATCH_SIZE = 4
    cfg.MODEL.SWIN.EMBED_DIM = 96
    cfg.MODEL.SWIN.DEPTHS = [2, 2, 6, 2]
    cfg.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24]
    cfg.MODEL.SWIN.WINDOW_SIZE = 7
    cfg.MODEL.SWIN.MLP_RATIO = 4.0
    cfg.MODEL.SWIN.QKV_BIAS = True
    cfg.MODEL.SWIN.QK_SCALE = None
    cfg.MODEL.SWIN.DROP_RATE = 0.0
    cfg.MODEL.SWIN.ATTN_DROP_RATE = 0.0
    cfg.MODEL.SWIN.DROP_PATH_RATE = 0.3
    cfg.MODEL.SWIN.APE = False
    cfg.MODEL.SWIN.PATCH_NORM = True
    cfg.MODEL.SWIN.OUT_FEATURES = ["res2", "res3", "res4", "res5"]
    cfg.MODEL.SWIN.USE_CHECKPOINT = False
    cfg.MODEL.SWIN.PRETRAINED_WEIGHT = None


    # support InterImage backbone
    cfg.MODEL.INTERNIMAGE = CN()  # large as base

    #### large
    cfg.MODEL.INTERNIMAGE.PRETRAINED_WEIGHT = None
    cfg.MODEL.INTERNIMAGE.CORE_OP = "DCNv3"
    cfg.MODEL.INTERNIMAGE.CHANNELS = 160
    cfg.MODEL.INTERNIMAGE.DEPTHS = [5, 5, 22, 5]
    cfg.MODEL.INTERNIMAGE.GROUPS =[10, 20, 40, 80]
    cfg.MODEL.INTERNIMAGE.MLP_RATIO =4.
    cfg.MODEL.INTERNIMAGE.DROP_PATH_RATE =0.0
    cfg.MODEL.INTERNIMAGE.NORM_LAYER = "LN"
    cfg.MODEL.INTERNIMAGE.LAYER_SCALE = 1.0
    cfg.MODEL.INTERNIMAGE.OFFSET_SCALE = 2.0
    cfg.MODEL.INTERNIMAGE.POST_NORM = True
    cfg.MODEL.INTERNIMAGE.WITH_CP = False
    cfg.MODEL.INTERNIMAGE.OUT_IINDICES = (0, 1, 2, 3)
    cfg.MODEL.INTERNIMAGE.DW_KERNEL_SIZE = None
    cfg.MODEL.INTERNIMAGE.RES_POST_NORM = False
    cfg.MODEL.INTERNIMAGE.LEVEL2_POST_NORM = False
    cfg.MODEL.INTERNIMAGE.LEVEL2_POST_NORM_BLOCK_IDS = None
    cfg.MODEL.INTERNIMAGE.CENTER_FEATURE_SCALE = False

    ### huge
    # cfg.MODEL.INTERNIMAGE.PRETRAINED_WEIGHT = None
    # cfg.MODEL.INTERNIMAGE.CORE_OP = "DCNv3"
    # cfg.MODEL.INTERNIMAGE.CHANNELS = 320
    # cfg.MODEL.INTERNIMAGE.DEPTHS = [6, 6, 32, 6]
    # cfg.MODEL.INTERNIMAGE.GROUPS = [10, 20, 40, 80]
    # cfg.MODEL.INTERNIMAGE.MLP_RATIO =4.
    # cfg.MODEL.INTERNIMAGE.DROP_PATH_RATE = 0.5
    # cfg.MODEL.INTERNIMAGE.NORM_LAYER = "LN"
    # cfg.MODEL.INTERNIMAGE.LAYER_SCALE = None
    # cfg.MODEL.INTERNIMAGE.OFFSET_SCALE = 1.0
    # cfg.MODEL.INTERNIMAGE.POST_NORM = False
    # cfg.MODEL.INTERNIMAGE.WITH_CP = False
    # cfg.MODEL.INTERNIMAGE.OUT_IINDICES = (0, 1, 2, 3)

    # cfg.MODEL.INTERNIMAGE.DW_KERNEL_SIZE = 5
    # cfg.MODEL.INTERNIMAGE.RES_POST_NORM = True
    # cfg.MODEL.INTERNIMAGE.LEVEL2_POST_NORM = True
    # cfg.MODEL.INTERNIMAGE.LEVEL2_POST_NORM_BLOCK_IDS = [5, 11, 17, 23, 29]
    # cfg.MODEL.INTERNIMAGE.CENTER_FEATURE_SCALE = True


    # support EVA02 backbone
    cfg.MODEL.EVA02 = CN()  # large as base

    #### large
    cfg.MODEL.EVA02.PRETRAINED_WEIGHT = None
    cfg.MODEL.EVA02.IMAGE_SIZE =  1536
    cfg.MODEL.EVA02.PATCH_SIZE =  16
    cfg.MODEL.EVA02.WINDOW_SIZE =  16
    cfg.MODEL.EVA02.DMBED_DIM =1024  
    cfg.MODEL.EVA02.DEPTH =  24
    cfg.MODEL.EVA02.NUM_HEADS =  16
    cfg.MODEL.EVA02.MLP_RATIO =   4*2/3
    cfg.MODEL.EVA02.DROP_PATH_RATE =  0.3
    cfg.MODEL.EVA02.CHECKPOINT = True
    cfg.MODEL.EVA02.WINDOW_BLOCK_INDEXES =  [0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22]
    
 

    # support EVA01 backbone
    cfg.MODEL.EVA01 = CN()  # large as base

    #### large
    cfg.MODEL.EVA01.PRETRAINED_WEIGHT = None

    cfg.MODEL.EVA01.BEIT_LIKE_QKV_BIAS = True
    cfg.MODEL.EVA01.BEIT_LIKE_GAMMA = False
    cfg.MODEL.EVA01.FREEZE_PATH_EMBED = True

    cfg.MODEL.EVA01.IMAGE_SIZE =  1280  # only for correct dim in pos embed
    cfg.MODEL.EVA01.PATCH_SIZE =  16
    cfg.MODEL.EVA01.WINDOW_SIZE =  16
    cfg.MODEL.EVA01.DMBED_DIM = 1408  
    cfg.MODEL.EVA01.DEPTH =  40
    cfg.MODEL.EVA01.NUM_HEADS =  16
    cfg.MODEL.EVA01.MLP_RATIO =   6144 / 1408
    cfg.MODEL.EVA01.DROP_PATH_RATE =  0.6
    cfg.MODEL.EVA01.WINDOW_BLOCK_INDEXES =  [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30, 32, 33, 34, 36, 37, 38]