Spaces:
Sleeping
Sleeping
doc: removed comments
Browse files
app.py
CHANGED
@@ -1,17 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, AutoTokenizer, BartForConditionalGeneration
|
3 |
import torch
|
4 |
-
import torchaudio
|
5 |
|
6 |
-
# Load BART
|
7 |
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
8 |
summarizer = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
|
9 |
|
10 |
-
# Load Wav2Vec2
|
11 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
12 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
13 |
|
14 |
-
# Check
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
model.to(device)
|
17 |
summarizer.to(device)
|
@@ -21,30 +21,25 @@ summarizer = torch.quantization.quantize_dynamic(summarizer, {torch.nn.Linear},
|
|
21 |
|
22 |
|
23 |
def transcribe_and_summarize(audioFile):
|
24 |
-
# Load audio using torchaudio
|
25 |
audio, sampling_rate = torchaudio.load(audioFile)
|
26 |
|
27 |
-
# Resample audio to 16kHz if necessary
|
28 |
if sampling_rate != 16000:
|
29 |
resample_transform = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
|
30 |
audio = resample_transform(audio)
|
31 |
audio = audio.squeeze()
|
32 |
|
33 |
-
|
34 |
-
chunk_size = int(16000 * 30) # 10-second chunks
|
35 |
transcription = ""
|
36 |
|
37 |
for i in range(0, len(audio), chunk_size):
|
38 |
chunk = audio[i:i+chunk_size].numpy()
|
39 |
inputs = processor(chunk, sampling_rate=16000, return_tensors="pt").input_values.to(device)
|
40 |
|
41 |
-
# Transcription
|
42 |
with torch.no_grad():
|
43 |
logits = model(inputs).logits
|
44 |
predicted_ids = torch.argmax(logits, dim=-1)
|
45 |
transcription += processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] + " "
|
46 |
|
47 |
-
# Summarization
|
48 |
inputs = tokenizer(transcription, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
49 |
|
50 |
result = summarizer.generate(
|
@@ -54,20 +49,19 @@ def transcribe_and_summarize(audioFile):
|
|
54 |
no_repeat_ngram_size=2,
|
55 |
encoder_no_repeat_ngram_size=2,
|
56 |
repetition_penalty=2.0,
|
57 |
-
num_beams=2,
|
58 |
early_stopping=True,
|
59 |
)
|
60 |
summary = tokenizer.decode(result[0], skip_special_tokens=True)
|
61 |
|
62 |
return transcription.strip(), summary.strip()
|
63 |
|
64 |
-
# Gradio interface
|
65 |
iface = gr.Interface(
|
66 |
fn=transcribe_and_summarize,
|
67 |
inputs=gr.Audio(type="filepath", label="Upload Audio"),
|
68 |
outputs=[gr.Textbox(label="Transcription"), gr.Textbox(label="Summary")],
|
69 |
title="Audio Transcription and Summarization",
|
70 |
-
description="Transcribe and summarize audio using
|
71 |
)
|
72 |
|
73 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, AutoTokenizer, BartForConditionalGeneration
|
3 |
import torch
|
4 |
+
import torchaudio
|
5 |
|
6 |
+
# Load BART
|
7 |
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
8 |
summarizer = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
|
9 |
|
10 |
+
# Load Wav2Vec2
|
11 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
12 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
13 |
|
14 |
+
# Check for CUDA
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
model.to(device)
|
17 |
summarizer.to(device)
|
|
|
21 |
|
22 |
|
23 |
def transcribe_and_summarize(audioFile):
|
|
|
24 |
audio, sampling_rate = torchaudio.load(audioFile)
|
25 |
|
|
|
26 |
if sampling_rate != 16000:
|
27 |
resample_transform = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
|
28 |
audio = resample_transform(audio)
|
29 |
audio = audio.squeeze()
|
30 |
|
31 |
+
chunk_size = int(16000 * 30)
|
|
|
32 |
transcription = ""
|
33 |
|
34 |
for i in range(0, len(audio), chunk_size):
|
35 |
chunk = audio[i:i+chunk_size].numpy()
|
36 |
inputs = processor(chunk, sampling_rate=16000, return_tensors="pt").input_values.to(device)
|
37 |
|
|
|
38 |
with torch.no_grad():
|
39 |
logits = model(inputs).logits
|
40 |
predicted_ids = torch.argmax(logits, dim=-1)
|
41 |
transcription += processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] + " "
|
42 |
|
|
|
43 |
inputs = tokenizer(transcription, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
44 |
|
45 |
result = summarizer.generate(
|
|
|
49 |
no_repeat_ngram_size=2,
|
50 |
encoder_no_repeat_ngram_size=2,
|
51 |
repetition_penalty=2.0,
|
52 |
+
num_beams=2,
|
53 |
early_stopping=True,
|
54 |
)
|
55 |
summary = tokenizer.decode(result[0], skip_special_tokens=True)
|
56 |
|
57 |
return transcription.strip(), summary.strip()
|
58 |
|
|
|
59 |
iface = gr.Interface(
|
60 |
fn=transcribe_and_summarize,
|
61 |
inputs=gr.Audio(type="filepath", label="Upload Audio"),
|
62 |
outputs=[gr.Textbox(label="Transcription"), gr.Textbox(label="Summary")],
|
63 |
title="Audio Transcription and Summarization",
|
64 |
+
description="Transcribe and summarize audio using Audio Summarizer.",
|
65 |
)
|
66 |
|
67 |
iface.launch()
|