JoshuaKelleyDs commited on
Commit
772e8d9
·
verified ·
1 Parent(s): e7a9686

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -0
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import chainlit as cl
2
+ from langchain_together import ChatTogether, TogetherEmbeddings
3
+ from langchain_core.runnables import RunnableSequence, RunnablePassthrough
4
+ from langchain_core.prompts import ChatPromptTemplate
5
+ from langchain_community.document_loaders import YoutubeLoader
6
+ from typing import List
7
+ import langchain_core
8
+ from langchain_community.vectorstores import FAISS
9
+ from langchain.retrievers.ensemble import EnsembleRetriever
10
+ from langchain_community.retrievers import BM25Retriever
11
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
12
+
13
+ def create_youtube_transcription(youtube_url: str):
14
+ loader = YoutubeLoader.from_youtube_url(
15
+ youtube_url, add_video_info=False
16
+ )
17
+ youtube_docs = loader.load()
18
+ return youtube_docs
19
+
20
+ def create_text_splitter(docs: List[langchain_core.documents.Document]):
21
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
22
+ docs = text_splitter.split_documents(docs)
23
+ return docs
24
+
25
+ def create_vector_store(docs: List[langchain_core.documents.Document]):
26
+ embedding = cl.user_session.get("embedding")
27
+ vector_db = FAISS.from_documents(docs, embedding)
28
+ return vector_db
29
+
30
+ def create_bm25_vector_store(docs: List[langchain_core.documents.Document]):
31
+ bm25 = BM25Retriever.from_documents(docs)
32
+ return bm25
33
+
34
+ def create_ensemble_retriever(vector_db:FAISS, bm25:BM25Retriever):
35
+ ensemble_retreiver = EnsembleRetriever(retrievers=[vector_db.as_retriever(), bm25], weights=[.3, .7])
36
+ return ensemble_retreiver
37
+
38
+ @cl.on_chat_start
39
+ async def start():
40
+ await cl.Message(content="my name is josh!").send()
41
+ try:
42
+ llm = ChatTogether(model="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo")
43
+ await cl.Message(content=f"model is successfully loaded").send()
44
+ cl.user_session.set("llm", llm)
45
+ embedding = TogetherEmbeddings(model="togethercomputer/m2-bert-80M-8k-retrieval")
46
+ cl.user_session.set("embedding", embedding)
47
+ await cl.Message(content="embedding model loaded").send()
48
+ youtube_link = await cl.AskUserMessage("Please provide the YouTube video link").send()
49
+ youtube_docs = create_youtube_transcription(youtube_link['output'])
50
+ split_docs = create_text_splitter(youtube_docs)
51
+ vector_db = create_vector_store(split_docs)
52
+ bm25 = create_bm25_vector_store(split_docs)
53
+ ensemble_retriever = create_ensemble_retriever(vector_db, bm25)
54
+ cl.user_session.set("ensemble_retriever", ensemble_retriever)
55
+ transcription = youtube_docs[0].page_content
56
+ await cl.Message(content=f"youtube docs: {transcription}").send()
57
+ cl.user_session.set("transcription", transcription)
58
+ except Exception as e:
59
+ await cl.Message(content=f"failed to load model: {e}").send()
60
+
61
+
62
+ @cl.on_message
63
+ async def message(message: cl.Message):
64
+ prompt_template = ChatPromptTemplate.from_template(template="""
65
+ You are a helpful assistant that can answer questions about the following video. Here is the appropriate chunks of context: {context}.
66
+ Answer the question: {question} but do not use any information outside of the video. Site the source or information you used to answer the question
67
+ """)
68
+ llm = cl.user_session.get("llm")
69
+ vector_db = cl.user_session.get("vector_db")
70
+ transcription = cl.user_session.get("transcription")
71
+ ensemble_retriever = cl.user_session.get("ensemble_retriever")
72
+ rag_chain = RunnableSequence({"context": ensemble_retriever, "question": RunnablePassthrough()}, prompt_template | llm)
73
+ response = rag_chain.invoke(message.content)
74
+ await cl.Message(content=response.content).send()
75
+