Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import chainlit as cl
|
2 |
+
from langchain_together import ChatTogether, TogetherEmbeddings
|
3 |
+
from langchain_core.runnables import RunnableSequence, RunnablePassthrough
|
4 |
+
from langchain_core.prompts import ChatPromptTemplate
|
5 |
+
from langchain_community.document_loaders import YoutubeLoader
|
6 |
+
from typing import List
|
7 |
+
import langchain_core
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from langchain.retrievers.ensemble import EnsembleRetriever
|
10 |
+
from langchain_community.retrievers import BM25Retriever
|
11 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
12 |
+
|
13 |
+
def create_youtube_transcription(youtube_url: str):
|
14 |
+
loader = YoutubeLoader.from_youtube_url(
|
15 |
+
youtube_url, add_video_info=False
|
16 |
+
)
|
17 |
+
youtube_docs = loader.load()
|
18 |
+
return youtube_docs
|
19 |
+
|
20 |
+
def create_text_splitter(docs: List[langchain_core.documents.Document]):
|
21 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
22 |
+
docs = text_splitter.split_documents(docs)
|
23 |
+
return docs
|
24 |
+
|
25 |
+
def create_vector_store(docs: List[langchain_core.documents.Document]):
|
26 |
+
embedding = cl.user_session.get("embedding")
|
27 |
+
vector_db = FAISS.from_documents(docs, embedding)
|
28 |
+
return vector_db
|
29 |
+
|
30 |
+
def create_bm25_vector_store(docs: List[langchain_core.documents.Document]):
|
31 |
+
bm25 = BM25Retriever.from_documents(docs)
|
32 |
+
return bm25
|
33 |
+
|
34 |
+
def create_ensemble_retriever(vector_db:FAISS, bm25:BM25Retriever):
|
35 |
+
ensemble_retreiver = EnsembleRetriever(retrievers=[vector_db.as_retriever(), bm25], weights=[.3, .7])
|
36 |
+
return ensemble_retreiver
|
37 |
+
|
38 |
+
@cl.on_chat_start
|
39 |
+
async def start():
|
40 |
+
await cl.Message(content="my name is josh!").send()
|
41 |
+
try:
|
42 |
+
llm = ChatTogether(model="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo")
|
43 |
+
await cl.Message(content=f"model is successfully loaded").send()
|
44 |
+
cl.user_session.set("llm", llm)
|
45 |
+
embedding = TogetherEmbeddings(model="togethercomputer/m2-bert-80M-8k-retrieval")
|
46 |
+
cl.user_session.set("embedding", embedding)
|
47 |
+
await cl.Message(content="embedding model loaded").send()
|
48 |
+
youtube_link = await cl.AskUserMessage("Please provide the YouTube video link").send()
|
49 |
+
youtube_docs = create_youtube_transcription(youtube_link['output'])
|
50 |
+
split_docs = create_text_splitter(youtube_docs)
|
51 |
+
vector_db = create_vector_store(split_docs)
|
52 |
+
bm25 = create_bm25_vector_store(split_docs)
|
53 |
+
ensemble_retriever = create_ensemble_retriever(vector_db, bm25)
|
54 |
+
cl.user_session.set("ensemble_retriever", ensemble_retriever)
|
55 |
+
transcription = youtube_docs[0].page_content
|
56 |
+
await cl.Message(content=f"youtube docs: {transcription}").send()
|
57 |
+
cl.user_session.set("transcription", transcription)
|
58 |
+
except Exception as e:
|
59 |
+
await cl.Message(content=f"failed to load model: {e}").send()
|
60 |
+
|
61 |
+
|
62 |
+
@cl.on_message
|
63 |
+
async def message(message: cl.Message):
|
64 |
+
prompt_template = ChatPromptTemplate.from_template(template="""
|
65 |
+
You are a helpful assistant that can answer questions about the following video. Here is the appropriate chunks of context: {context}.
|
66 |
+
Answer the question: {question} but do not use any information outside of the video. Site the source or information you used to answer the question
|
67 |
+
""")
|
68 |
+
llm = cl.user_session.get("llm")
|
69 |
+
vector_db = cl.user_session.get("vector_db")
|
70 |
+
transcription = cl.user_session.get("transcription")
|
71 |
+
ensemble_retriever = cl.user_session.get("ensemble_retriever")
|
72 |
+
rag_chain = RunnableSequence({"context": ensemble_retriever, "question": RunnablePassthrough()}, prompt_template | llm)
|
73 |
+
response = rag_chain.invoke(message.content)
|
74 |
+
await cl.Message(content=response.content).send()
|
75 |
+
|