JoshuaKelleyDs commited on
Commit
0cb6ea1
·
verified ·
1 Parent(s): ccac939

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -21,14 +21,14 @@ async def create_youtube_transcription(youtube_url: str) -> List[langchain_core.
21
  """
22
  try:
23
  loader = YoutubeLoader.from_youtube_url(
24
- youtube_url, add_video_info=True
25
  ) # we can also pass an array of youtube urls to load multiple videos at once!
26
  youtube_docs = loader.load() # this loads the transcript
27
  return youtube_docs
28
  except Exception as e:
29
- await cl.Message(content=f"failed to load youtube video: {e}").send() # display the error if we failed to load the youtube video
30
 
31
- def create_text_splitter(docs: List[langchain_core.documents.Document]):
32
  """
33
  Create a text splitter from a list of documents
34
  More Info: ument_transformers/recursive_text_splitter/
@@ -102,13 +102,13 @@ async def start():
102
  # more on ask user message: https://docs.chainlit.io/api-reference/ask/ask-for-input
103
  await cl.Message(content=f"youtube link: {youtube_link}").send() # display and double check to make sure the link is correct
104
  youtube_docs = await create_youtube_transcription(youtube_link['content']) # create the youtube transcription
 
 
105
  split_docs = create_text_splitter(youtube_docs) # split the documents into chunks
106
  vector_db = create_faiss_vector_store(split_docs) # create the vector db
107
  bm25 = create_bm25_retreiver(split_docs) # create the BM25 retreiver
108
  ensemble_retriever = await create_ensemble_retriever(vector_db, bm25) # create the ensemble retriever
109
  cl.user_session.set("ensemble_retriever", ensemble_retriever) # store the ensemble retriever in the user session for our on message function
110
- transcription = youtube_docs[0].page_content # get the transcription of the first document
111
- await cl.Message(content=f"youtube docs: {transcription}").send() # display the transcription of the first document to show that we have the correct data
112
  except Exception as e:
113
  await cl.Message(content=f"failed to load model: {e}").send() # display the error if we failed to load the model
114
 
 
21
  """
22
  try:
23
  loader = YoutubeLoader.from_youtube_url(
24
+ youtube_url, add_video_info=False
25
  ) # we can also pass an array of youtube urls to load multiple videos at once!
26
  youtube_docs = loader.load() # this loads the transcript
27
  return youtube_docs
28
  except Exception as e:
29
+ await cl.Message(content=f"failed to load youtube video: {e} Please refresh the page").send() # display the error if we failed to load the youtube video
30
 
31
+ async def create_text_splitter(docs: List[langchain_core.documents.Document]):
32
  """
33
  Create a text splitter from a list of documents
34
  More Info: ument_transformers/recursive_text_splitter/
 
102
  # more on ask user message: https://docs.chainlit.io/api-reference/ask/ask-for-input
103
  await cl.Message(content=f"youtube link: {youtube_link}").send() # display and double check to make sure the link is correct
104
  youtube_docs = await create_youtube_transcription(youtube_link['content']) # create the youtube transcription
105
+ transcription = youtube_docs[0].page_content # get the transcription of the first document
106
+ await cl.Message(content=f"youtube docs: {transcription}").send() # display the transcription of the first document to show that we have the correct data
107
  split_docs = create_text_splitter(youtube_docs) # split the documents into chunks
108
  vector_db = create_faiss_vector_store(split_docs) # create the vector db
109
  bm25 = create_bm25_retreiver(split_docs) # create the BM25 retreiver
110
  ensemble_retriever = await create_ensemble_retriever(vector_db, bm25) # create the ensemble retriever
111
  cl.user_session.set("ensemble_retriever", ensemble_retriever) # store the ensemble retriever in the user session for our on message function
 
 
112
  except Exception as e:
113
  await cl.Message(content=f"failed to load model: {e}").send() # display the error if we failed to load the model
114