Spaces:
Running
Running
<html lang="en"> | |
<head> | |
<meta http-equiv="X-UA-Compatible" content="IE=Edge" /> | |
<meta charset="utf-8" /> | |
</head> | |
<body style="margin: 0;"> | |
<div id="p10" style="overflow: hidden; position: relative; background-color: white; width: 2200px; height: 1237px;"> | |
<!-- Begin shared CSS values --> | |
<style class="shared-css" type="text/css" > | |
.t { | |
transform-origin: bottom left; | |
z-index: 2; | |
position: absolute; | |
white-space: pre; | |
overflow: visible; | |
line-height: 1.5; | |
} | |
.text-container { | |
white-space: pre; | |
} | |
@supports (-webkit-touch-callout: none) { | |
.text-container { | |
white-space: normal; | |
} | |
} | |
</style> | |
<!-- End shared CSS values --> | |
<!-- Begin inline CSS --> | |
<style type="text/css" > | |
#t1_10{left:0px;bottom:1054px;letter-spacing:-0.23px;} | |
#t2_10{left:0px;bottom:917px;letter-spacing:-0.24px;} | |
#t3_10{left:0px;bottom:781px;letter-spacing:-0.24px;} | |
#t4_10{left:0px;bottom:645px;letter-spacing:-0.21px;} | |
#t5_10{left:565px;bottom:998px;letter-spacing:0.21px;} | |
#t6_10{left:565px;bottom:934px;letter-spacing:0.2px;} | |
#t7_10{left:565px;bottom:870px;letter-spacing:0.2px;} | |
#t8_10{left:699px;bottom:1080px;letter-spacing:0.14px;} | |
#t9_10{left:565px;bottom:766px;letter-spacing:0.21px;} | |
#ta_10{left:861px;bottom:766px;letter-spacing:0.22px;} | |
#tb_10{left:565px;bottom:702px;letter-spacing:0.2px;} | |
#tc_10{left:101px;bottom:501px;letter-spacing:0.21px;} | |
#td_10{left:398px;bottom:501px;letter-spacing:0.2px;} | |
#te_10{left:101px;bottom:437px;letter-spacing:0.2px;} | |
#tf_10{left:101px;bottom:373px;letter-spacing:0.21px;} | |
#tg_10{left:101px;bottom:309px;letter-spacing:0.2px;} | |
#th_10{left:101px;bottom:245px;letter-spacing:0.21px;} | |
#ti_10{left:101px;bottom:181px;letter-spacing:0.21px;} | |
.s1_10{font-size:115px;font-family:IBMPlexSans_2d;color:#000;} | |
.s2_10{font-size:115px;font-family:IBMPlexSans-Bold_2l;color:#000;} | |
.s3_10{font-size:53px;font-family:IBMPlexSans-Italic_2o;color:#000;} | |
.s4_10{font-size:99px;font-family:IBMPlexSans-Bold_2l;color:#000;} | |
.s5_10{font-size:53px;font-family:IBMPlexSans_2d;color:#000;} | |
</style> | |
<!-- End inline CSS --> | |
<!-- Begin embedded font definitions --> | |
<style id="fonts10" type="text/css" > | |
@font-face { | |
font-family: IBMPlexSans-Bold_2l; | |
src: url("fonts/IBMPlexSans-Bold_2l.woff") format("woff"); | |
} | |
@font-face { | |
font-family: IBMPlexSans-Italic_2o; | |
src: url("fonts/IBMPlexSans-Italic_2o.woff") format("woff"); | |
} | |
@font-face { | |
font-family: IBMPlexSans_2d; | |
src: url("fonts/IBMPlexSans_2d.woff") format("woff"); | |
} | |
</style> | |
<!-- End embedded font definitions --> | |
<!-- Begin page background --> | |
<div id="pg10Overlay" style="width:100%; height:100%; position:absolute; z-index:1; background-color:rgba(0,0,0,0); -webkit-user-select: none;"></div> | |
<div id="pg10" style="-webkit-user-select: none;"><object width="2200" height="1237" data="10/10.svg" type="image/svg+xml" id="pdf10" style="width:2200px; height:1237px; -moz-transform:scale(1); z-index: 0;"></object></div> | |
<!-- End page background --> | |
<!-- Begin text definitions (Positioned/styled in CSS) --> | |
<div class="text-container"><span id="t1_10" class="t s1_10">Problems </span> | |
<span id="t2_10" class="t s1_10">and </span> | |
<span id="t3_10" class="t s2_10">Proposed </span> | |
<span id="t4_10" class="t s2_10">Solutions </span> | |
<span id="t5_10" class="t s3_10">When a model has learned to focus too much on the specific </span> | |
<span id="t6_10" class="t s3_10">characteristics of the training data, rather than generalizing to new </span> | |
<span id="t7_10" class="t s3_10">situations. </span> | |
<span id="t8_10" class="t s4_10">2.Overfitting </span> | |
<span id="t9_10" class="t s5_10">Solution 1 </span><span id="ta_10" class="t s5_10">Dreambooth used prior-preservation loss, and the </span> | |
<span id="tb_10" class="t s5_10">ratio of prior-preservation is never easy to determine. </span> | |
<span id="tc_10" class="t s5_10">Solution 2 </span><span id="td_10" class="t s5_10">It is training data that caused the overfitting. Thus we use a subset of </span> | |
<span id="te_10" class="t s5_10">the training data to train an overfitted model, select the previous checkpoint which </span> | |
<span id="tf_10" class="t s5_10">and use it to generate images by prompt for a single word. These images can be </span> | |
<span id="tg_10" class="t s5_10">placed in the regular training data according to the word frequency ratio, and the </span> | |
<span id="th_10" class="t s5_10">subset of the which that caused the overfitting can be removed, and then retrain </span> | |
<span id="ti_10" class="t s5_10">the model from the very beginning. </span></div> | |
<!-- End text definitions --> | |
</div> | |
</body> | |
</html> | |