Spaces:
Runtime error
Runtime error
File size: 8,495 Bytes
87c1f70 24916ab 99f009d 87c1f70 24916ab 87c1f70 f5552ba 87c1f70 2fd9b4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import tweepy as tw
import streamlit as st
import pandas as pd
import torch
import numpy as np
import re
import datetime
from pysentimiento.preprocessing import preprocess_tweet
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AdamW
tokenizer = AutoTokenizer.from_pretrained('JosePezantes/finetuned-robertuito-base-cased-V-P-G')
model = AutoModelForSequenceClassification.from_pretrained("JosePezantes/finetuned-robertuito-base-cased-V-P-G")
import torch
if torch.cuda.is_available():
device = torch.device("cuda")
print('I will use the GPU:', torch.cuda.get_device_name(0))
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
consumer_key = st.secrets["consumer_key"]
consumer_secret = st.secrets["consumer_secret"]
access_token = st.secrets["access_token"]
access_token_secret = st.secrets["access_token_secret"]
auth = tw.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tw.API(auth, wait_on_rate_limit=True)
def preprocess(text):
text=text.lower()
# remove hyperlinks
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
text = re.sub(r'http?:\/\/.*[\r\n]*', '', text)
#Replace &, <, > with &,<,> respectively
text=text.replace(r'&?',r'and')
text=text.replace(r'<',r'<')
text=text.replace(r'>',r'>')
#remove hashtag sign
text=re.sub(r"#","",text)
#remove mentions
text = re.sub(r"(?:\@)\w+", '', text)
#remove non ascii chars
text=text.encode("ascii",errors="ignore").decode()
#remove some puncts (except . ! ?)
text=re.sub(r'[:"#$%&\*+,-/:;<=>@\\^_`{|}~]+','',text)
text=re.sub(r'[!]+','!',text)
text=re.sub(r'[?]+','?',text)
text=re.sub(r'[.]+','.',text)
text=re.sub(r"'","",text)
text=re.sub(r"\(","",text)
text=re.sub(r"\)","",text)
text=" ".join(text.split())
return text
def highlight_survived(s):
return ['background-color: red']*len(s) if (s.violencia_política_de_género == 1) else ['background-color: green']*len(s)
def color_survived(val):
color = 'red' if val=='violencia política de género' else 'white'
return f'background-color: {color}'
st.set_page_config(layout="wide")
st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True)
#background-color: Blue;
colT1,colT2 = st.columns([2,8])
with colT2:
#st.title('Analisis de contenido de violencia política de género en Twitter')
st.markdown(""" <style> .font {
font-size:40px ; font-family: 'Cooper Black'; color: #F15A28;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font">Violencia política de género en Twitter</p>', unsafe_allow_html=True)
st.markdown(""" <style> .font1 {
font-size:28px ; font-family: 'Times New Roman'; color: #07B6F5;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font1">Modelo de lenguaje utilizando RoBERTuito, para identificar tweets con contenido de violencia política de género </p>', unsafe_allow_html=True)
with colT1:
st.image("https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSP09HkQ52tAuccb8iFEWs9E4ag0xRVjDSYXHNHSdSIuzERFPxPZ6NQZYnd_WXB2j-kkoQ&usqp=CAU",width=200)
st.markdown(""" <style> .font2 {
font-size:16px ; font-family: 'Times New Roman'; color: #181618;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font2">La presente app utiliza tweepy para descargar tweets de twitter en base a la información de entrada y procesa los tweets usando el modelo de lenguaje entrenado para identificar tweets que representan violencia política de género. Los tweets recolectados y su correspondiente clasificación se almacenan en un dataframe que se muestra como resultado final.</p>',unsafe_allow_html=True)
with open("style.css") as f:
st.markdown(f"<style>{f.read()}</style>",unsafe_allow_html=True)
def run():
df = pd.DataFrame()
showTable = False
col,col1,col2 = st.columns([2,3,2])
with col1:
myform = st.form(key='Introduzca Texto')
search_words = myform.text_input("Introduzca el termino o usuario para analizar y pulse el check correspondiente")
number_of_tweets = myform.number_input('Introduzca número de tweets a analizar. Máximo 50', 0,50,10)
filtro=myform.radio("Seleccione la opcion para filtrar",('Termino', 'Usuario'))
submit_button = myform.form_submit_button(label='Analizar')
if submit_button:
if (filtro=='Termino'):
new_search = search_words + " -filter:retweets"
tweets =tw.Cursor(api.search_tweets,q=new_search,lang="es",tweet_mode="extended").items(number_of_tweets)
elif (filtro=='Usuario'):
tweets = api.user_timeline(screen_name = search_words,tweet_mode="extended",count=number_of_tweets)
tweet_list = [i.full_text for i in tweets]
text= pd.DataFrame(tweet_list)
#text[0] = text[0].apply(preprocess)
text[0] = text[0].apply(preprocess_tweet)
text1=text[0].values
indices1=tokenizer.batch_encode_plus(text1.tolist(),
max_length=128,
add_special_tokens=True,
return_attention_mask=True,
pad_to_max_length=True,
truncation=True)
input_ids1=indices1["input_ids"]
attention_masks1=indices1["attention_mask"]
prediction_inputs1= torch.tensor(input_ids1)
prediction_masks1 = torch.tensor(attention_masks1)
# Set the batch size.
batch_size = 25
# Create the DataLoader.
prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1)
prediction_sampler1 = SequentialSampler(prediction_data1)
prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
# Put model in evaluation mode
model.eval()
# Tracking variables
predictions = []
# Predict
for batch in prediction_dataloader1:
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids1, b_input_mask1 = batch
# Telling the model not to compute or store gradients, saving memory and # speeding up prediction
with torch.no_grad():
# Forward pass, calculate logit predictions
outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
logits1 = outputs1[0]
# Move logits and labels to CPU
logits1 = logits1.detach().cpu().numpy()
# Store predictions and true labels
predictions.append(logits1)
flat_predictions = [item for sublist in predictions for item in sublist]
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()
df = pd.DataFrame(list(zip(tweet_list, flat_predictions)),columns =['Últimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words, 'violencia política de género'])
df['violencia política de género']= np.where(df['violencia política de género']== 0, 'no violencia política de género', 'violencia política de género')
showTable = True
if (showTable):
df.index+=1
print(df.index)
st.table(df.head(50).style.set_properties(subset=['violencia política de género'], **{'width': '250px'}).applymap(color_survived, subset=['violencia política de género']))
try:
run()
except KeyError:
cole,cole1,cole2 = st.columns([3,3,2])
with cole1:
st.error('Termino no encontrado ⚠️', icon="⚠️")
except tw.errors.NotFound:
coleu,coleu1,coleu2 = st.columns([3,3,2])
with coleu1:
st.error('El usuario ingresados es incorrecto ⚠️', icon="⚠️") |