File size: 8,495 Bytes
87c1f70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24916ab
99f009d
 
 
87c1f70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24916ab
87c1f70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5552ba
 
 
87c1f70
2fd9b4b
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import tweepy as tw
import streamlit as st
import pandas as pd
import torch
import numpy as np
import re
import datetime

from pysentimiento.preprocessing import preprocess_tweet

from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AdamW

tokenizer = AutoTokenizer.from_pretrained('JosePezantes/finetuned-robertuito-base-cased-V-P-G')
model = AutoModelForSequenceClassification.from_pretrained("JosePezantes/finetuned-robertuito-base-cased-V-P-G")

import torch
if torch.cuda.is_available():  
    device = torch.device("cuda")
    print('I will use the GPU:', torch.cuda.get_device_name(0))
    
else:
    print('No GPU available, using the CPU instead.')
    device = torch.device("cpu")

consumer_key = st.secrets["consumer_key"]
consumer_secret = st.secrets["consumer_secret"]
access_token = st.secrets["access_token"]
access_token_secret = st.secrets["access_token_secret"]
auth = tw.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tw.API(auth, wait_on_rate_limit=True)

def preprocess(text):
    text=text.lower()
    # remove hyperlinks
    text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
    text = re.sub(r'http?:\/\/.*[\r\n]*', '', text)
    #Replace &amp, &lt, &gt with &,<,> respectively
    text=text.replace(r'&amp;?',r'and')
    text=text.replace(r'&lt;',r'<')
    text=text.replace(r'&gt;',r'>')
    #remove hashtag sign
    text=re.sub(r"#","",text)   
    #remove mentions
    text = re.sub(r"(?:\@)\w+", '', text)
    #remove non ascii chars
    text=text.encode("ascii",errors="ignore").decode()
    #remove some puncts (except . ! ?)
    text=re.sub(r'[:"#$%&\*+,-/:;<=>@\\^_`{|}~]+','',text)
    text=re.sub(r'[!]+','!',text)
    text=re.sub(r'[?]+','?',text)
    text=re.sub(r'[.]+','.',text)
    text=re.sub(r"'","",text)
    text=re.sub(r"\(","",text)
    text=re.sub(r"\)","",text)
    text=" ".join(text.split())
    return text
    
def highlight_survived(s):
    return ['background-color: red']*len(s) if (s.violencia_política_de_género == 1) else ['background-color: green']*len(s)

def color_survived(val):
    color = 'red' if val=='violencia política de género' else 'white'
    return f'background-color: {color}'                

st.set_page_config(layout="wide")
st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True)

#background-color: Blue;

colT1,colT2 = st.columns([2,8])
with colT2:
    #st.title('Analisis de contenido de violencia política de género en Twitter') 
    st.markdown(""" <style> .font {
    font-size:40px ; font-family: 'Cooper Black'; color: #F15A28;} 
    </style> """, unsafe_allow_html=True)
    st.markdown('<p class="font">Violencia política de género en Twitter</p>', unsafe_allow_html=True)
    
    st.markdown(""" <style> .font1 {
    font-size:28px ; font-family: 'Times New Roman'; color: #07B6F5;} 
    </style> """, unsafe_allow_html=True)
    st.markdown('<p class="font1">Modelo de lenguaje utilizando RoBERTuito, para identificar tweets con contenido de violencia política de género </p>', unsafe_allow_html=True)
    
with colT1:
    st.image("https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSP09HkQ52tAuccb8iFEWs9E4ag0xRVjDSYXHNHSdSIuzERFPxPZ6NQZYnd_WXB2j-kkoQ&usqp=CAU",width=200)

st.markdown(""" <style> .font2 {
    font-size:16px ; font-family: 'Times New Roman'; color: #181618;} 
    </style> """, unsafe_allow_html=True)
st.markdown('<p class="font2">La presente app utiliza tweepy para descargar tweets de twitter en base a la información de entrada y procesa los tweets usando el modelo de lenguaje entrenado para identificar tweets que representan violencia política de género. Los tweets recolectados y su correspondiente clasificación se almacenan en un dataframe que se muestra como resultado final.</p>',unsafe_allow_html=True)

with open("style.css") as f: 
    st.markdown(f"<style>{f.read()}</style>",unsafe_allow_html=True)
    
def run():
    df =  pd.DataFrame()
    showTable = False    
    col,col1,col2 = st.columns([2,3,2])
      
    with col1:
        myform = st.form(key='Introduzca Texto')
        search_words = myform.text_input("Introduzca el termino o usuario para analizar y pulse el check correspondiente")
        number_of_tweets = myform.number_input('Introduzca número de tweets a analizar. Máximo 50', 0,50,10)
        filtro=myform.radio("Seleccione la opcion para filtrar",('Termino', 'Usuario'))

                               
        submit_button = myform.form_submit_button(label='Analizar')
        
        if submit_button:
             
            if (filtro=='Termino'):
                new_search = search_words + " -filter:retweets"
                tweets =tw.Cursor(api.search_tweets,q=new_search,lang="es",tweet_mode="extended").items(number_of_tweets)

            elif (filtro=='Usuario'):
                tweets = api.user_timeline(screen_name = search_words,tweet_mode="extended",count=number_of_tweets)
            
            tweet_list = [i.full_text for i in tweets]
            
            text= pd.DataFrame(tweet_list)
            #text[0] = text[0].apply(preprocess)
            text[0] = text[0].apply(preprocess_tweet)
            text1=text[0].values
            indices1=tokenizer.batch_encode_plus(text1.tolist(),
                                     max_length=128,
                                     add_special_tokens=True, 
                                     return_attention_mask=True,
                                     pad_to_max_length=True,
                                     truncation=True)
            input_ids1=indices1["input_ids"]
            attention_masks1=indices1["attention_mask"]
            prediction_inputs1= torch.tensor(input_ids1)
            prediction_masks1 = torch.tensor(attention_masks1)
            # Set the batch size.  
            batch_size = 25
            # Create the DataLoader.
            prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1)
            prediction_sampler1 = SequentialSampler(prediction_data1)
            prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
            print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
            # Put model in evaluation mode
            model.eval()
            # Tracking variables 
            predictions = []
            # Predict 
            for batch in prediction_dataloader1:
                batch = tuple(t.to(device) for t in batch)
                # Unpack the inputs from our dataloader
                b_input_ids1, b_input_mask1 = batch
                # Telling the model not to compute or store gradients, saving memory and   # speeding up prediction
                with torch.no_grad():
                    # Forward pass, calculate logit predictions
                    outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
                logits1 = outputs1[0]
                # Move logits and labels to CPU
                logits1 = logits1.detach().cpu().numpy()
                # Store predictions and true labels
                predictions.append(logits1)
            flat_predictions = [item for sublist in predictions for item in sublist]
            flat_predictions = np.argmax(flat_predictions, axis=1).flatten()
            df = pd.DataFrame(list(zip(tweet_list, flat_predictions)),columns =['Últimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words, 'violencia política de género'])
            df['violencia política de género']= np.where(df['violencia política de género']== 0, 'no violencia política de género', 'violencia política de género')
            showTable = True
                
    if (showTable):            
        df.index+=1
        print(df.index)
        st.table(df.head(50).style.set_properties(subset=['violencia política de género'], **{'width': '250px'}).applymap(color_survived, subset=['violencia política de género']))
                           
try:
    run()
except KeyError:
    cole,cole1,cole2 = st.columns([3,3,2])
      
    with cole1:
        st.error('Termino no encontrado ⚠️', icon="⚠️")

except tw.errors.NotFound:
    coleu,coleu1,coleu2 = st.columns([3,3,2])
      
    with coleu1:
        st.error('El usuario ingresados es incorrecto ⚠️', icon="⚠️")