Jokica17's picture
Added backend `app` module and core engine logic:
cd20a25
raw
history blame
737 Bytes
import numpy as np
def cosine_similarity(
query_vector: np.ndarray,
corpus_vectors: np.ndarray
) -> np.ndarray:
"""
Calculate cosine similarity between prompt vectors.
Args:
query_vector: Vectorized prompt query of shape (1, D).
corpus_vectors: Vectorized prompt corpus of shape (N, D).
Returns:
The vector of shape (N,) with values in range [-1, 1] where 1 is max similarity i.e., two vectors are the same.
"""
query_norm = np.linalg.norm(query_vector, axis=1)[0]
corpus_norms = np.linalg.norm(corpus_vectors, axis=1)
dot_products = np.dot(corpus_vectors, query_vector.T).flatten()
similarities = dot_products / (query_norm * corpus_norms)
return similarities