text2tag-llm / genimage.py
John6666's picture
Upload 4 files
57ec10d verified
raw
history blame
4.56 kB
import spaces
import torch
import gc
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def load_pipeline():
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"John6666/rae-diffusion-xl-v2-sdxl-spo-pcm",
custom_pipeline="lpw_stable_diffusion_xl",
#custom_pipeline="nyanko7/sdxl_smoothed_energy_guidance",
torch_dtype=torch.float16,
)
pipe.to("cpu")
return pipe
def token_auto_concat_embeds(pipe, positive, negative):
max_length = pipe.tokenizer.model_max_length
positive_length = pipe.tokenizer(positive, return_tensors="pt").input_ids.shape[-1]
negative_length = pipe.tokenizer(negative, return_tensors="pt").input_ids.shape[-1]
print(f'Token length is model maximum: {max_length}, positive length: {positive_length}, negative length: {negative_length}.')
if max_length < positive_length or max_length < negative_length:
print('Concatenated embedding.')
if positive_length > negative_length:
positive_ids = pipe.tokenizer(positive, return_tensors="pt").input_ids.to("cuda")
negative_ids = pipe.tokenizer(negative, truncation=False, padding="max_length", max_length=positive_ids.shape[-1], return_tensors="pt").input_ids.to("cuda")
else:
negative_ids = pipe.tokenizer(negative, return_tensors="pt").input_ids.to("cuda")
positive_ids = pipe.tokenizer(positive, truncation=False, padding="max_length", max_length=negative_ids.shape[-1], return_tensors="pt").input_ids.to("cuda")
else:
positive_ids = pipe.tokenizer(positive, truncation=False, padding="max_length", max_length=max_length, return_tensors="pt").input_ids.to("cuda")
negative_ids = pipe.tokenizer(negative, truncation=False, padding="max_length", max_length=max_length, return_tensors="pt").input_ids.to("cuda")
positive_concat_embeds = []
negative_concat_embeds = []
for i in range(0, positive_ids.shape[-1], max_length):
positive_concat_embeds.append(pipe.text_encoder(positive_ids[:, i: i + max_length])[0])
negative_concat_embeds.append(pipe.text_encoder(negative_ids[:, i: i + max_length])[0])
positive_prompt_embeds = torch.cat(positive_concat_embeds, dim=1)
negative_prompt_embeds = torch.cat(negative_concat_embeds, dim=1)
return positive_prompt_embeds, negative_prompt_embeds
def save_image(image, metadata, output_dir):
import os
import uuid
import json
from PIL import PngImagePlugin
filename = str(uuid.uuid4()) + ".png"
os.makedirs(output_dir, exist_ok=True)
filepath = os.path.join(output_dir, filename)
metadata_str = json.dumps(metadata)
info = PngImagePlugin.PngInfo()
info.add_text("metadata", metadata_str)
image.save(filepath, "PNG", pnginfo=info)
return filepath
pipe = load_pipeline()
@torch.inference_mode()
@spaces.GPU
def generate_image(prompt, neg_prompt):
pipe.to(device)
prompt += ", anime, masterpiece, best quality, very aesthetic, absurdres"
neg_prompt += ", bad hands, bad feet, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], photo, deformed, disfigured, low contrast, photo, deformed, disfigured, low contrast"
metadata = {
"prompt": prompt,
"negative_prompt": neg_prompt,
"resolution": f"{1024} x {1024}",
"guidance_scale": 7.0,
"num_inference_steps": 28,
"sampler": "Euler",
}
try:
#positive_embeds, negative_embeds = token_auto_concat_embeds(pipe, prompt, neg_prompt)
images = pipe(
prompt=prompt,
negative_prompt=neg_prompt,
width=1024,
height=1024,
guidance_scale=7.0,# seg_scale=3.0, seg_applied_layers=["mid"],
num_inference_steps=28,
output_type="pil",
clip_skip=2,
).images
pipe.to("cpu")
if images:
image_paths = [
save_image(image, metadata, "./outputs")
for image in images
]
return image_paths
except Exception as e:
print(e)
pipe.to("cpu")
return []
finally:
torch.cuda.empty_cache()
gc.collect()