# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0) import gguf import torch import numpy as np def dequantize_tensor(tensor, dtype=torch.float16): data = torch.tensor(tensor.data) qtype = tensor.tensor_type oshape = tensor.tensor_shape if qtype == gguf.GGMLQuantizationType.F32: return data.to(dtype) elif qtype == gguf.GGMLQuantizationType.F16: return data.to(dtype) elif qtype in dequantize_functions: # dequantize in fp16 then convert instead of keeping FP32 out = dequantize(data, qtype, oshape, dtype=None) return out.to(dtype) if out.dtype != dtype else out # why is .to() not a no-op? else: # this is incredibly slow new = gguf.quants.dequantize(data.cpu().numpy(), qtype) return torch.from_numpy(new).to(data.device, dtype=dtype) def dequantize(data, qtype, oshape, dtype=None): """ Dequantize tensor back to usable shape/dtype """ block_size, type_size = gguf.GGML_QUANT_SIZES[qtype] dequantize_blocks = dequantize_functions[qtype] rows = data.reshape( (-1, data.shape[-1]) ).view(torch.uint8) n_blocks = rows.numel() // type_size blocks = rows.reshape((n_blocks, type_size)) blocks = dequantize_blocks(blocks, block_size, type_size, dtype) return blocks.reshape(oshape) def to_uint32(x): # no uint32 :( x = x.view(torch.uint8).to(torch.int32) return (x[:, 0] | x[:, 1] << 8 | x[:, 2] << 16 | x[:, 3] << 24).unsqueeze(1) def dequantize_blocks_Q8_0(blocks, block_size, type_size, dtype=None): d = blocks[:, :2].view(torch.float16).to(dtype) x = blocks[:, 2:].view(torch.int8) return (d * x) def dequantize_blocks_Q5_1(blocks, block_size, type_size, dtype=None): n_blocks = blocks.shape[0] d = blocks[:, :2].view(torch.float16).to(dtype) m = blocks[:, 2:4].view(torch.float16).to(dtype) qh = blocks[:, 4:8] qs = blocks[:, 8: ] qh = to_uint32(qh) qh = qh.reshape((n_blocks, 1)) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32) ql = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(1, 1, 2, 1) qh = (qh & 1).to(torch.uint8) ql = (ql & 0x0F).reshape((n_blocks, -1)) qs = (ql | (qh << 4)) return (d * qs) + m def dequantize_blocks_Q5_0(blocks, block_size, type_size, dtype=None): n_blocks = blocks.shape[0] d = blocks[:, :2].view(torch.float16).to(dtype) qh = blocks[:, 2:6] qs = blocks[:, 6: ] qh = to_uint32(qh) qh = qh.reshape(n_blocks, 1) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32) ql = qs.reshape(n_blocks, -1, 1, block_size // 2) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(1, 1, 2, 1) qh = (qh & 1).to(torch.uint8) ql = (ql & 0x0F).reshape(n_blocks, -1) qs = (ql | (qh << 4)).to(torch.int8) - 16 return (d * qs) def dequantize_blocks_Q4_1(blocks, block_size, type_size, dtype=None): n_blocks = blocks.shape[0] d = blocks[:, :2].view(torch.float16).to(dtype) m = blocks[:, 2:4].view(torch.float16).to(dtype) qs = blocks[:, 4: ] qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(1, 1, 2, 1) qs = (qs & 0x0F).reshape(n_blocks, -1) return (d * qs) + m def dequantize_blocks_Q4_0(blocks, block_size, type_size, dtype=None): n_blocks = blocks.shape[0] d = blocks[:, :2].view(torch.float16).to(dtype) qs = blocks[:, 2:] qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1)) qs = (qs & 0x0F).reshape((n_blocks, -1)).to(torch.int8) - 8 return (d * qs) dequantize_functions = { gguf.GGMLQuantizationType.Q8_0: dequantize_blocks_Q8_0, gguf.GGMLQuantizationType.Q5_1: dequantize_blocks_Q5_1, gguf.GGMLQuantizationType.Q5_0: dequantize_blocks_Q5_0, gguf.GGMLQuantizationType.Q4_1: dequantize_blocks_Q4_1, gguf.GGMLQuantizationType.Q4_0: dequantize_blocks_Q4_0, }