File size: 51,940 Bytes
501231e dfe0a88 501231e dfe0a88 501231e 7a6d055 501231e dfe0a88 7700be4 dfe0a88 7700be4 dfe0a88 501231e bffe899 501231e bffe899 501231e 7700be4 501231e dfe0a88 501231e bffe899 501231e bffe899 501231e bffe899 501231e bffe899 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e 8217c9e 501231e dfe0a88 501231e 8217c9e 501231e 3d57406 501231e 3d57406 501231e 8217c9e 501231e 8217c9e 501231e 8217c9e 501231e 8217c9e 501231e 8217c9e 3d57406 8217c9e 501231e 8217c9e 501231e 8217c9e 501231e dfe0a88 501231e bffe899 501231e bffe899 501231e bffe899 dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 bffe899 501231e dfe0a88 8217c9e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e dfe0a88 8217c9e dfe0a88 501231e dfe0a88 501231e dfe0a88 501231e bffe899 501231e bffe899 501231e bffe899 501231e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 |
import json
import torch
from safetensors.torch import load_file, save_file
from pathlib import Path
import gc
import gguf
from dequant import dequantize_tensor # https://github.com/city96/ComfyUI-GGUF
import os
import argparse
import gradio as gr
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
import subprocess
subprocess.run('pip cache purge', shell=True)
import spaces
@spaces.GPU()
def spaces_dummy():
pass
flux_dev_repo = "ChuckMcSneed/FLUX.1-dev"
flux_schnell_repo = "black-forest-labs/FLUX.1-schnell"
system_temp_dir = "temp"
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.set_grad_enabled(False)
GGUF_QTYPE = [gguf.GGMLQuantizationType.Q8_0, gguf.GGMLQuantizationType.Q5_1,
gguf.GGMLQuantizationType.Q5_0, gguf.GGMLQuantizationType.Q4_1,
gguf.GGMLQuantizationType.Q4_0, gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16]
TORCH_DTYPE = [torch.float32, torch.float, torch.float64, torch.double, torch.float16, torch.half,
torch.bfloat16, torch.complex32, torch.chalf, torch.complex64, torch.cfloat,
torch.complex128, torch.cdouble, torch.uint8, torch.uint16, torch.uint32, torch.uint64,
torch.int8, torch.int16, torch.short, torch.int32, torch.int, torch.int64, torch.long,
torch.bool, torch.float8_e4m3fn, torch.float8_e5m2]
TORCH_QUANTIZED_DTYPE = [torch.quint8, torch.qint8, torch.qint32, torch.quint4x2]
def list_sub(a, b):
return [e for e in a if e not in b]
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
def clear_cache():
torch.cuda.empty_cache()
gc.collect()
def clear_sd(sd: dict):
for k in list(sd.keys()):
sd.pop(k)
del sd
torch.cuda.empty_cache()
gc.collect()
def clone_sd(sd: dict):
from copy import deepcopy
print("Cloning state dict.")
for k in list(sd.keys()):
sd[k] = deepcopy(sd.pop(k))
#sd[k] = sd.pop(k).detach().clone().to(device="cpu")
torch.cuda.empty_cache()
gc.collect()
def print_resource_usage():
import psutil
cpu_usage = psutil.cpu_percent()
ram_usage = psutil.virtual_memory().used / psutil.virtual_memory().total * 100
print(f"CPU usage: {cpu_usage}% / RAM usage: {ram_usage}%")
def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Start downloading...")
url = url.strip()
if "drive.google.com" in url:
original_dir = os.getcwd()
os.chdir(directory)
os.system(f"gdown --fuzzy {url}")
os.chdir(original_dir)
elif "huggingface.co" in url:
url = url.replace("?download=true", "")
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/")
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
else:
os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
elif "civitai.com" in url:
if "?" in url:
url = url.split("?")[0]
if civitai_api_key:
url = url + f"?token={civitai_api_key}"
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
else:
print("You need an API key to download Civitai models.")
else:
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
def get_local_model_list(dir_path):
model_list = []
valid_extensions = ('.safetensors')
for file in Path(dir_path).glob("*"):
if file.suffix in valid_extensions:
file_path = str(Path(f"{dir_path}/{file.name}"))
model_list.append(file_path)
return model_list
def get_download_file(temp_dir, url, civitai_key, progress=gr.Progress(track_tqdm=True)):
if not "http" in url and is_repo_name(url) and not Path(url).exists():
print(f"Use HF Repo: {url}")
new_file = url
elif not "http" in url and Path(url).exists():
print(f"Use local file: {url}")
new_file = url
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
print(f"File to download alreday exists: {url}")
new_file = f"{temp_dir}/{url.split('/')[-1]}"
else:
print(f"Start downloading: {url}")
before = get_local_model_list(temp_dir)
try:
download_thing(temp_dir, url.strip(), civitai_key)
except Exception:
print(f"Download failed: {url}")
return ""
after = get_local_model_list(temp_dir)
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
if not new_file:
print(f"Download failed: {url}")
return ""
print(f"Download completed: {url}")
return new_file
def save_readme_md(dir, url):
orig_url = ""
if "http" in url:
orig_url = url
if orig_url:
md = f"""---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co./black-forest-labs/FLUX.1-dev/blob/main/LICENSE.
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
- Flux
---
Converted from [{orig_url}]({orig_url}).
"""
else:
md = f"""---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co./black-forest-labs/FLUX.1-dev/blob/main/LICENSE.
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
- Flux
---
"""
path = str(Path(dir, "README.md"))
with open(path, mode='w', encoding="utf-8") as f:
f.write(md)
def is_repo_exists(repo_id):
from huggingface_hub import HfApi
api = HfApi()
try:
if api.repo_exists(repo_id=repo_id): return True
else: return False
except Exception as e:
print(f"Error: Failed to connect {repo_id}. ")
return True # for safe
def create_diffusers_repo(new_repo_id, diffusers_folder, is_private, is_overwrite, progress=gr.Progress(track_tqdm=True)):
from huggingface_hub import HfApi
import os
hf_token = os.environ.get("HF_TOKEN")
api = HfApi()
try:
progress(0, desc="Start uploading...")
api.create_repo(repo_id=new_repo_id, token=hf_token, private=is_private, exist_ok=is_overwrite)
for path in Path(diffusers_folder).glob("*"):
if path.is_dir():
api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
elif path.is_file():
api.upload_file(repo_id=new_repo_id, path_or_fileobj=str(path), path_in_repo=path.name, token=hf_token)
progress(1, desc="Uploaded.")
url = f"https://huggingface.co./{new_repo_id}"
except Exception as e:
print(f"Error: Failed to upload to {new_repo_id}. ")
print(e)
return ""
return url
# https://github.com/huggingface/diffusers/blob/main/scripts/convert_flux_to_diffusers.py
# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
with torch.no_grad(), torch.autocast(device):
@torch.jit.script
def swap_scale_shift(weight):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
with torch.no_grad(), torch.autocast(device):
def convert_flux_transformer_checkpoint_to_diffusers(
original_state_dict, num_layers, num_single_layers, inner_dim, mlp_ratio=4.0,
progress=gr.Progress(track_tqdm=True)):
def conv(cdict: dict, odict: dict, ckey: str, okey: str):
if okey in odict.keys():
progress(0, desc=f"Converting {okey} => {ckey}")
print(f"Converting {okey} => {ckey}")
cdict[ckey] = odict.pop(okey)
gc.collect()
def convswap(cdict: dict, odict: dict, ckey: str, okey: str):
if okey in odict.keys():
progress(0, desc=f"Converting (swap) {okey} => {ckey}")
print(f"Converting {okey} => {ckey} (swap)")
cdict[ckey] = swap_scale_shift(odict.pop(okey))
gc.collect()
def convqkv(cdict: dict, odict: dict, i: int):
keys = odict.keys()
if (f"double_blocks.{i}.img_attn.qkv.weight" in keys or f"double_blocks.{i}.txt_attn.qkv.weight" in keys\
or f"double_blocks.{i}.img_attn.qkv.bias" in keys or f"double_blocks.{i}.txt_attn.qkv.bias" in keys)\
and (f"double_blocks.{i}.img_attn.qkv.weight" not in keys or f"double_blocks.{i}.txt_attn.qkv.weight" not in keys\
or f"double_blocks.{i}.img_attn.qkv.bias" not in keys or f"double_blocks.{i}.txt_attn.qkv.bias" not in keys):
progress(0, desc=f"Key error in converting Q, K, V (double_blocks.{i}).")
print(f"Key error in converting Q, K, V (double_blocks.{i}).")
return
progress(0, desc=f"Converting Q, K, V (double_blocks.{i}).")
print(f"Converting Q, K, V (double_blocks.{i}).")
sample_q, sample_k, sample_v = torch.chunk(
odict.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0
)
context_q, context_k, context_v = torch.chunk(
odict.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
)
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
odict.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
)
context_q_bias, context_k_bias, context_v_bias = torch.chunk(
odict.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
)
cdict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
cdict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
cdict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
cdict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
cdict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
cdict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
cdict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
cdict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
cdict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
cdict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
cdict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
cdict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
gc.collect()
def convqkvmlp(cdict: dict, odict: dict, i: int, inner_dim: int, mlp_ratio: float):
keys = odict.keys()
if (f"single_blocks.{i}.linear1.weight" in keys or f"single_blocks.{i}.linear1.bias" in keys)\
and (f"single_blocks.{i}.linear1.weight" not in keys or f"single_blocks.{i}.linear1.bias" not in keys):
progress(0, desc=f"Key error in converting Q, K, V, mlp (single_blocks.{i}).")
print(f"Key error in converting Q, K, V, mlp (single_blocks.{i}).")
return
progress(0, desc=f"Converting Q, K, V, mlp (single_blocks.{i}).")
print(f"Converting Q, K, V, mlp (single_blocks.{i}).")
mlp_hidden_dim = int(inner_dim * mlp_ratio)
split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
q, k, v, mlp = torch.split(odict.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0)
q_bias, k_bias, v_bias, mlp_bias = torch.split(
odict.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0
)
cdict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q])
cdict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias])
cdict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k])
cdict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias])
cdict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v])
cdict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias])
cdict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp])
cdict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias])
gc.collect()
converted_state_dict = {}
progress(0, desc="Converting FLUX.1 state dict to Diffusers format.")
## time_text_embed.timestep_embedder <- time_in
conv(converted_state_dict, original_state_dict, "time_text_embed.timestep_embedder.linear_1.weight", "time_in.in_layer.weight")
conv(converted_state_dict, original_state_dict, "time_text_embed.timestep_embedder.linear_1.bias", "time_in.in_layer.bias")
conv(converted_state_dict, original_state_dict, "time_text_embed.timestep_embedder.linear_2.weight", "time_in.out_layer.weight")
conv(converted_state_dict, original_state_dict, "time_text_embed.timestep_embedder.linear_2.bias", "time_in.out_layer.bias")
## time_text_embed.text_embedder <- vector_in
conv(converted_state_dict, original_state_dict, "time_text_embed.text_embedder.linear_1.weight", "vector_in.in_layer.weight")
conv(converted_state_dict, original_state_dict, "time_text_embed.text_embedder.linear_1.bias", "vector_in.in_layer.bias")
conv(converted_state_dict, original_state_dict, "time_text_embed.text_embedder.linear_2.weight", "vector_in.out_layer.weight")
conv(converted_state_dict, original_state_dict, "time_text_embed.text_embedder.linear_2.bias", "vector_in.out_layer.bias")
# guidance
has_guidance = any("guidance" in k for k in original_state_dict)
if has_guidance:
conv(converted_state_dict, original_state_dict, "time_text_embed.guidance_embedder.linear_1.weight", "guidance_in.in_layer.weight")
conv(converted_state_dict, original_state_dict, "time_text_embed.guidance_embedder.linear_1.bias", "guidance_in.in_layer.bias")
conv(converted_state_dict, original_state_dict, "time_text_embed.guidance_embedder.linear_2.weight", "guidance_in.out_layer.weight")
conv(converted_state_dict, original_state_dict, "time_text_embed.guidance_embedder.linear_2.bias", "guidance_in.out_layer.bias")
# context_embedder
conv(converted_state_dict, original_state_dict, "context_embedder.weight", "txt_in.weight")
conv(converted_state_dict, original_state_dict, "context_embedder.bias", "txt_in.bias")
# x_embedder
conv(converted_state_dict, original_state_dict, "x_embedder.weight", "img_in.weight")
conv(converted_state_dict, original_state_dict, "x_embedder.bias", "img_in.bias")
progress(0.25, desc="Converting FLUX.1 state dict to Diffusers format.")
# double transformer blocks
for i in range(num_layers):
block_prefix = f"transformer_blocks.{i}."
# norms.
## norm1
conv(converted_state_dict, original_state_dict, f"{block_prefix}norm1.linear.weight", f"double_blocks.{i}.img_mod.lin.weight")
conv(converted_state_dict, original_state_dict, f"{block_prefix}norm1.linear.bias", f"double_blocks.{i}.img_mod.lin.bias")
## norm1_context
conv(converted_state_dict, original_state_dict, f"{block_prefix}norm1_context.linear.weight", f"double_blocks.{i}.txt_mod.lin.weight")
conv(converted_state_dict, original_state_dict, f"{block_prefix}norm1_context.linear.bias", f"double_blocks.{i}.txt_mod.lin.bias")
# Q, K, V
convqkv(converted_state_dict, original_state_dict, i)
# qk_norm
conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.norm_q.weight", f"double_blocks.{i}.img_attn.norm.query_norm.scale")
conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.norm_k.weight", f"double_blocks.{i}.img_attn.norm.key_norm.scale")
conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.norm_added_q.weight", f"double_blocks.{i}.txt_attn.norm.query_norm.scale")
conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.norm_added_k.weight", f"double_blocks.{i}.txt_attn.norm.key_norm.scale")
# ff img_mlp
conv(converted_state_dict, original_state_dict, f"{block_prefix}ff.net.0.proj.weight", f"double_blocks.{i}.img_mlp.0.weight")
conv(converted_state_dict, original_state_dict, f"{block_prefix}ff.net.0.proj.bias", f"double_blocks.{i}.img_mlp.0.bias")
conv(converted_state_dict, original_state_dict, f"{block_prefix}ff.net.2.weight", f"double_blocks.{i}.img_mlp.2.weight")
conv(converted_state_dict, original_state_dict, f"{block_prefix}ff.net.2.bias", f"double_blocks.{i}.img_mlp.2.bias")
conv(converted_state_dict, original_state_dict, f"{block_prefix}ff_context.net.0.proj.weight", f"double_blocks.{i}.txt_mlp.0.weight")
conv(converted_state_dict, original_state_dict, f"{block_prefix}ff_context.net.0.proj.bias", f"double_blocks.{i}.txt_mlp.0.bias")
conv(converted_state_dict, original_state_dict, f"{block_prefix}ff_context.net.2.weight", f"double_blocks.{i}.txt_mlp.2.weight")
conv(converted_state_dict, original_state_dict, f"{block_prefix}ff_context.net.2.bias", f"double_blocks.{i}.txt_mlp.2.bias")
# output projections.
conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.to_out.0.weight", f"double_blocks.{i}.img_attn.proj.weight")
conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.to_out.0.bias", f"double_blocks.{i}.img_attn.proj.bias")
conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.to_add_out.weight", f"double_blocks.{i}.txt_attn.proj.weight")
conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.to_add_out.bias", f"double_blocks.{i}.txt_attn.proj.bias")
progress(0.5, desc="Converting FLUX.1 state dict to Diffusers format.")
# single transfomer blocks
for i in range(num_single_layers):
block_prefix = f"single_transformer_blocks.{i}."
# norm.linear <- single_blocks.0.modulation.lin
conv(converted_state_dict, original_state_dict, f"{block_prefix}norm.linear.weight", f"single_blocks.{i}.modulation.lin.weight")
conv(converted_state_dict, original_state_dict, f"{block_prefix}norm.linear.bias", f"single_blocks.{i}.modulation.lin.bias")
# Q, K, V, mlp
convqkvmlp(converted_state_dict, original_state_dict, i, inner_dim, mlp_ratio)
# qk norm
conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.norm_q.weight", f"single_blocks.{i}.norm.query_norm.scale")
conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.norm_k.weight", f"single_blocks.{i}.norm.key_norm.scale")
# output projections.
conv(converted_state_dict, original_state_dict, f"{block_prefix}proj_out.weight", f"single_blocks.{i}.linear2.weight")
conv(converted_state_dict, original_state_dict, f"{block_prefix}proj_out.bias", f"single_blocks.{i}.linear2.bias")
progress(0.75, desc="Converting FLUX.1 state dict to Diffusers format.")
conv(converted_state_dict, original_state_dict, "proj_out.weight", "final_layer.linear.weight")
conv(converted_state_dict, original_state_dict, "proj_out.bias", "final_layer.linear.bias")
convswap(converted_state_dict, original_state_dict, "norm_out.linear.weight", "final_layer.adaLN_modulation.1.weight")
convswap(converted_state_dict, original_state_dict, "norm_out.linear.bias", "final_layer.adaLN_modulation.1.bias")
progress(1, desc="Converting FLUX.1 state dict to Diffusers format.")
return converted_state_dict
# read safetensors metadata
def read_safetensors_metadata(path):
with open(path, 'rb') as f:
header_size = int.from_bytes(f.read(8), 'little')
header_json = f.read(header_size).decode('utf-8')
header = json.loads(header_json)
metadata = header.get('__metadata__', {})
return metadata.copy()
def normalize_key(k: str):
return k.replace("vae.", "").replace("model.diffusion_model.", "")\
.replace("text_encoders.clip_l.transformer.", "")\
.replace("text_encoders.t5xxl.transformer.", "")
def load_json_list(path: str):
try:
with open(path, encoding='utf-8') as f:
return list(json.load(f))
except Exception as e:
print(e)
return []
# https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/modeling_utils.py
# https://huggingface.co./docs/huggingface_hub/v0.24.5/package_reference/serialization
# https://huggingface.co./docs/huggingface_hub/index
with torch.no_grad():
def to_safetensors(sd: dict, path: str, pattern: str, size: str, progress=gr.Progress(track_tqdm=True)):
from huggingface_hub import save_torch_state_dict
print(f"Saving a temporary file to disk: {path}")
os.makedirs(path, exist_ok=True)
try:
for k, v in sd.items():
sd[k] = v.to(device="cpu")
save_torch_state_dict(sd, path, filename_pattern=pattern, max_shard_size=size)
except Exception as e:
print(e)
# https://discuss.huggingface.co/t/t5forconditionalgeneration-checkpoint-size-mismatch-19418/24119
# https://github.com/huggingface/transformers/issues/13769
# https://github.com/huggingface/optimum-quanto/issues/278
# https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/serialization/_torch.py
# https://huggingface.co./docs/accelerate/usage_guides/big_modeling
with torch.no_grad():
def to_safetensors_flux_module(sd: dict, path: str, pattern: str, size: str,
quantization: bool=False, name: str = "",
metadata: dict | None = None, progress=gr.Progress(track_tqdm=True)):
from huggingface_hub import save_torch_state_dict, save_torch_model
from accelerate import init_empty_weights
try:
progress(0, desc=f"Preparing to save FLUX.1 {name} to Diffusers format.")
print(f"Preparing to save FLUX.1 {name} to Diffusers format.")
for k, v in sd.items():
sd[k] = v.to(device="cpu")
progress(0, desc=f"Loading FLUX.1 {name}.")
print(f"Loading FLUX.1 {name}.")
os.makedirs(path, exist_ok=True)
if quantization:
progress(0.5, desc=f"Saving quantized FLUX.1 {name} to {path}")
print(f"Saving quantized FLUX.1 {name} to {path}")
else:
progress(0.5, desc=f"Saving FLUX.1 {name} to: {path}")
if False and path.endswith("/transformer"):
from diffusers import FluxTransformer2DModel
has_guidance = any("guidance" in k for k in sd)
with init_empty_weights():
model = FluxTransformer2DModel(guidance_embeds=has_guidance)
model.to("cpu")
model.load_state_dict(sd, strict=True)
print(f"Saving FLUX.1 {name} to: {path} (FluxTransformer2DModel)")
if metadata is not None:
progress(0.5, desc=f"Saving FLUX.1 {name} metadata to: {path}")
save_torch_model(model=model, save_directory=path,
filename_pattern=pattern, max_shard_size=size, metadata=metadata)
else:
save_torch_model(model=model, save_directory=path,
filename_pattern=pattern, max_shard_size=size)
else:
print(f"Saving FLUX.1 {name} to: {path}")
if metadata is not None:
progress(0.5, desc=f"Saving FLUX.1 {name} metadata to: {path}")
save_torch_state_dict(state_dict=sd, save_directory=path,
filename_pattern=pattern, max_shard_size=size, metadata=metadata)
else:
save_torch_state_dict(state_dict=sd, save_directory=path,
filename_pattern=pattern, max_shard_size=size)
progress(1, desc=f"Saved FLUX.1 {name} to: {path}")
print(f"Saved FLUX.1 {name} to: {path}")
except Exception as e:
print(e)
finally:
gc.collect()
flux_transformer_json = "flux_transformer_keys.json"
flux_t5xxl_json = "flux_t5xxl_keys.json"
flux_clip_json = "flux_clip_keys.json"
flux_vae_json = "flux_vae_keys.json"
keys_flux_t5xxl = set(load_json_list(flux_t5xxl_json))
keys_flux_transformer = set(load_json_list(flux_transformer_json))
keys_flux_clip = set(load_json_list(flux_clip_json))
keys_flux_vae = set(load_json_list(flux_vae_json))
with torch.no_grad():
def dequant_tensor(v: torch.Tensor, dtype: torch.dtype, dequant: bool):
try:
#print(f"shape: {v.shape} / dim: {v.ndim}")
if dequant:
qtype = v.tensor_type
if v.dtype in TORCH_DTYPE: return v.to(dtype) if v.dtype != dtype else v
elif qtype in GGUF_QTYPE: return dequantize_tensor(v, dtype)
elif torch.dtype in TORCH_QUANTIZED_DTYPE: return torch.dequantize(v).to(dtype)
else: return torch.dequantize(v).to(dtype)
else: return v.to(dtype) if v.dtype != dtype else v
except Exception as e:
print(e)
with torch.no_grad():
def normalize_flux_state_dict(path: str, savepath: str, dtype: torch.dtype = torch.bfloat16,
dequant: bool = False, progress=gr.Progress(track_tqdm=True)):
progress(0, desc=f"Loading and normalizing FLUX.1 safetensors: {path}")
print(f"Loading and normalizing FLUX.1 safetensors: {path}")
new_sd = dict()
state_dict = load_file(path, device="cpu")
try:
for k in list(state_dict.keys()):
v = state_dict.pop(k)
nk = normalize_key(k)
print(f"{k} => {nk}") #
new_sd[nk] = dequant_tensor(v, dtype, dequant)
except Exception as e:
print(e)
return
finally:
clear_sd(state_dict)
new_path = str(Path(savepath, Path(path).stem + "_fixed" + Path(path).suffix))
metadata = read_safetensors_metadata(path)
progress(0.5, desc=f"Saving FLUX.1 safetensors: {new_path}")
print(f"Saving FLUX.1 safetensors: {new_path}")
os.makedirs(savepath, exist_ok=True)
save_file(new_sd, new_path, metadata={"format": "pt", **metadata})
progress(1, desc=f"Saved FLUX.1 safetensors: {new_path}")
print(f"Saved FLUX.1 safetensors: {new_path}")
clear_sd(new_sd)
with torch.no_grad():
def extract_norm_flux_module_sd(path: str, dtype: torch.dtype = torch.bfloat16,
dequant: bool = False, name: str = "", keys: set = {},
progress=gr.Progress(track_tqdm=True)):
progress(0, desc=f"Loading and normalizing FLUX.1 {name} safetensors: {path}")
print(f"Loading and normalizing FLUX.1 {name} safetensors: {path}")
new_sd = dict()
state_dict = load_file(path, device="cpu")
try:
for k in list(state_dict.keys()):
if k not in keys: state_dict.pop(k)
gc.collect()
for k in list(state_dict.keys()):
v = state_dict.pop(k)
if k in keys:
nk = normalize_key(k)
progress(0.5, desc=f"{k} => {nk}") #
print(f"{k} => {nk}") #
new_sd[nk] = dequant_tensor(v, dtype, dequant)
#print_resource_usage() #
except Exception as e:
print(e)
return None
finally:
progress(1, desc=f"Normalized FLUX.1 {name} safetensors: {path}")
print(f"Normalized FLUX.1 {name} safetensors: {path}")
clear_sd(state_dict)
return new_sd
with torch.no_grad():
def convert_flux_transformer_sd_to_diffusers(sd: dict, progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Converting FLUX.1 state dict to Diffusers format.")
print("Converting FLUX.1 state dict to Diffusers format.")
num_layers = 19
num_single_layers = 38
inner_dim = 3072
mlp_ratio = 4.0
try:
sd = convert_flux_transformer_checkpoint_to_diffusers(
sd, num_layers, num_single_layers, inner_dim, mlp_ratio=mlp_ratio
)
except Exception as e:
print(e)
finally:
progress(1, desc="Converted FLUX.1 state dict to Diffusers format.")
print("Converted FLUX.1 state dict to Diffusers format.")
gc.collect()
return sd
with torch.no_grad():
def load_sharded_safetensors(path: str):
import glob
sd = {}
try:
for filepath in glob.glob(f"{path}/*.safetensors"):
sharded_sd = load_file(str(filepath), device="cpu")
for k, v in sharded_sd.items():
sharded_sd[k] = v.to(device="cpu")
sd = sd | sharded_sd.copy()
clear_sd(sharded_sd)
except Exception as e:
print(e)
return sd
# https://huggingface.co./docs/safetensors/api/torch
with torch.no_grad():
def convert_flux_transformer_sd_to_diffusers_sharded(sd: dict, path: str, pattern: str,
size: str, progress=gr.Progress(track_tqdm=True)):
from huggingface_hub import save_torch_state_dict#, load_torch_model
import glob
try:
progress(0, desc=f"Saving temporary files to disk: {path}")
print(f"Saving temporary files to disk: {path}")
os.makedirs(path, exist_ok=True)
for k, v in sd.items():
if k in set(keys_flux_transformer): sd[k] = v.to(device="cpu")
save_torch_state_dict(sd, path, filename_pattern=pattern, max_shard_size=size)
clear_sd(sd)
progress(0.25, desc=f"Saved temporary files to disk: {path}")
print(f"Saved temporary files to disk: {path}")
for filepath in glob.glob(f"{path}/*.safetensors"):
progress(0.25, desc=f"Processing temporary files: {str(filepath)}")
print(f"Processing temporary files: {str(filepath)}")
sharded_sd = load_file(str(filepath), device="cpu")
sharded_sd = convert_flux_transformer_sd_to_diffusers(sharded_sd)
for k, v in sharded_sd.items():
sharded_sd[k] = v.to(device="cpu")
save_file(sharded_sd, str(filepath))
clear_sd(sharded_sd)
print(f"Loading temporary files from disk: {path}")
sd = load_sharded_safetensors(path)
print(f"Loaded temporary files from disk: {path}")
except Exception as e:
print(e)
return sd
with torch.no_grad():
def extract_normalized_flux_state_dict_sharded(loadpath: str, dtype: torch.dtype,
dequant: bool, path: str, pattern: str, size: str, progress=gr.Progress(track_tqdm=True)):
from huggingface_hub import save_torch_state_dict#, load_torch_model
import glob
try:
progress(0, desc=f"Loading model file: {loadpath}")
print(f"Loading model file: {loadpath}")
sd = load_file(loadpath, device="cpu")
progress(0, desc=f"Saving temporary files to disk: {path}")
print(f"Saving temporary files to disk: {path}")
os.makedirs(path, exist_ok=True)
for k, v in sd.items():
sd[k] = v.to(device="cpu")
save_torch_state_dict(sd, path, filename_pattern=pattern, max_shard_size=size)
clear_sd(sd)
progress(0.25, desc=f"Saved temporary files to disk: {path}")
print(f"Saved temporary files to disk: {path}")
for filepath in glob.glob(f"{path}/*.safetensors"):
progress(0.25, desc=f"Processing temporary files: {str(filepath)}")
print(f"Processing temporary files: {str(filepath)}")
sharded_sd = extract_norm_flux_module_sd(str(filepath), dtype, dequant,
"Transformer", keys_flux_transformer)
for k, v in sharded_sd.items():
sharded_sd[k] = v.to(device="cpu")
save_file(sharded_sd, str(filepath))
clear_sd(sharded_sd)
print(f"Processed temporary files: {str(filepath)}")
print(f"Loading temporary files from disk: {path}")
sd = load_sharded_safetensors(path)
print(f"Loaded temporary files from disk: {path}")
except Exception as e:
print(e)
return sd
def download_repo(repo_name, path, use_original=["vae", "text_encoder"], progress=gr.Progress(track_tqdm=True)):
from huggingface_hub import snapshot_download
print(f"Downloading {repo_name}.")
try:
if "text_encoder_2" in use_original:
snapshot_download(repo_id=repo_name, local_dir=path, ignore_patterns=["transformer/diffusion*.*", "*.sft", ".*", "README*", "*.md", "*.index", "*.jpg", "*.png", "*.webp"])
else:
snapshot_download(repo_id=repo_name, local_dir=path, ignore_patterns=["transformer/diffusion*.*", "text_encoder_2/model*.*", "*.sft", ".*", "README*", "*.md", "*.index", "*.jpg", "*.png", "*.webp"])
except Exception as e:
print(e)
def copy_nontensor_files(from_path, to_path, use_original=["vae", "text_encoder"]):
import shutil
if "text_encoder_2" in use_original:
te_from = str(Path(from_path, "text_encoder_2"))
te_to = str(Path(to_path, "text_encoder_2"))
print(f"Copying Text Encoder 2 files {te_from} to {te_to}")
shutil.copytree(te_from, te_to, ignore=shutil.ignore_patterns(".*", "README*", "*.md", "*.jpg", "*.png", "*.webp"), dirs_exist_ok=True)
if "text_encoder" in use_original:
te1_from = str(Path(from_path, "text_encoder"))
te1_to = str(Path(to_path, "text_encoder"))
print(f"Copying Text Encoder 1 files {te1_from} to {te1_to}")
shutil.copytree(te1_from, te1_to, ignore=shutil.ignore_patterns(".*", "README*", "*.md", "*.jpg", "*.png", "*.webp"), dirs_exist_ok=True)
if "vae" in use_original:
vae_from = str(Path(from_path, "vae"))
vae_to = str(Path(to_path, "vae"))
print(f"Copying VAE files {vae_from} to {vae_to}")
shutil.copytree(vae_from, vae_to, ignore=shutil.ignore_patterns(".*", "README*", "*.md", "*.jpg", "*.png", "*.webp"), dirs_exist_ok=True)
tn2_from = str(Path(from_path, "tokenizer_2"))
tn2_to = str(Path(to_path, "tokenizer_2"))
print(f"Copying Tokenizer 2 files {tn2_from} to {tn2_to}")
shutil.copytree(tn2_from, tn2_to, ignore=shutil.ignore_patterns(".*", "README*", "*.md", "*.jpg", "*.png", "*.webp"), dirs_exist_ok=True)
print(f"Copying non-tensor files {from_path} to {to_path}")
shutil.copytree(from_path, to_path, ignore=shutil.ignore_patterns("*.safetensors", "*.bin", "*.sft", ".*", "README*", "*.md", "*.index", "*.jpg", "*.png", "*.webp", "*.index.json"), dirs_exist_ok=True)
def save_flux_other_diffusers(path: str, model_type: str = "dev", use_original: list = ["vae", "text_encoder"], progress=gr.Progress(track_tqdm=True)):
import shutil
progress(0, desc="Loading FLUX.1 Components.")
print("Loading FLUX.1 Components.")
temppath = system_temp_dir
if model_type == "schnell": repo = flux_schnell_repo
else: repo = flux_dev_repo
os.makedirs(temppath, exist_ok=True)
os.makedirs(path, exist_ok=True)
download_repo(repo, temppath, use_original)
progress(0.5, desc="Saving FLUX.1 Components.")
print("Saving FLUX.1 Components.")
copy_nontensor_files(temppath, path, use_original)
shutil.rmtree(temppath)
with torch.no_grad():
def fix_flux_safetensors(loadpath: str, savepath: str, dtype: torch.dtype = torch.bfloat16,
quantization: bool = False, model_type: str = "dev", dequant: bool = False):
save_flux_other_diffusers(savepath, model_type)
normalize_flux_state_dict(loadpath, savepath, dtype, dequant)
clear_cache()
with torch.no_grad(): # Much lower memory consumption, but higher disk load
def flux_to_diffusers_lowmem(loadpath: str, savepath: str, dtype: torch.dtype = torch.bfloat16,
quantization: bool = False, model_type: str = "dev",
dequant: bool = False, use_original: list = ["vae", "text_encoder"],
new_repo_id: str = "", local: bool = False, progress=gr.Progress(track_tqdm=True)):
unet_sd_path = savepath.removesuffix("/") + "/transformer"
unet_sd_pattern = "diffusion_pytorch_model{suffix}.safetensors"
unet_sd_size = "9.5GB"
te_sd_path = savepath.removesuffix("/") + "/text_encoder_2"
te_sd_pattern = "model{suffix}.safetensors"
te_sd_size = "5GB"
clip_sd_path = savepath.removesuffix("/") + "/text_encoder"
clip_sd_pattern = "model{suffix}.safetensors"
clip_sd_size = "9.5GB"
vae_sd_path = savepath.removesuffix("/") + "/vae"
vae_sd_pattern = "diffusion_pytorch_model{suffix}.safetensors"
vae_sd_size = "9.5GB"
print_resource_usage() #
metadata = {"format": "pt", **read_safetensors_metadata(loadpath)}
clear_cache()
print_resource_usage() #
if "vae" not in use_original:
vae_sd = extract_norm_flux_module_sd(loadpath, torch.bfloat16, dequant, "VAE",
keys_flux_vae)
to_safetensors_flux_module(vae_sd, vae_sd_path, vae_sd_pattern, vae_sd_size,
quantization, "VAE", None)
clear_sd(vae_sd)
print_resource_usage() #
if "text_encoder" not in use_original:
clip_sd = extract_norm_flux_module_sd(loadpath, torch.bfloat16, dequant, "Text Encoder",
keys_flux_clip)
to_safetensors_flux_module(clip_sd, clip_sd_path, clip_sd_pattern, clip_sd_size,
quantization, "Text Encoder", None)
clear_sd(clip_sd)
print_resource_usage() #
if "text_encoder_2" not in use_original:
te_sd = extract_norm_flux_module_sd(loadpath, dtype, dequant, "Text Encoder 2",
keys_flux_t5xxl)
to_safetensors_flux_module(te_sd, te_sd_path, te_sd_pattern, te_sd_size,
quantization, "Text Encoder 2", None)
clear_sd(te_sd)
print_resource_usage() #
unet_sd = extract_norm_flux_module_sd(loadpath, dtype, dequant, "Transformer",
keys_flux_transformer)
clear_cache()
print_resource_usage() #
if not local:
os.remove(loadpath)
print("Deleted downloaded file.")
clear_cache()
print_resource_usage() #
unet_sd = convert_flux_transformer_sd_to_diffusers(unet_sd)
clear_cache()
print_resource_usage() #
to_safetensors_flux_module(unet_sd, unet_sd_path, unet_sd_pattern, unet_sd_size,
quantization, "Transformer", metadata)
clear_sd(unet_sd)
print_resource_usage() #
save_flux_other_diffusers(savepath, model_type, use_original)
print_resource_usage() #
with torch.no_grad(): # lowest memory consumption, but higheest disk load
def flux_to_diffusers_lowmem2(loadpath: str, savepath: str, dtype: torch.dtype = torch.bfloat16,
quantization: bool = False, model_type: str = "dev",
dequant: bool = False, use_original: list = ["vae", "text_encoder"],
new_repo_id: str = "", progress=gr.Progress(track_tqdm=True)):
unet_sd_path = savepath.removesuffix("/") + "/transformer"
unet_temp_path = system_temp_dir.removesuffix("/") + "/sharded"
unet_sd_pattern = "diffusion_pytorch_model{suffix}.safetensors"
unet_sd_size = "10GB"
unet_temp_size = "5GB"
te_sd_path = savepath.removesuffix("/") + "/text_encoder_2"
te_sd_pattern = "model{suffix}.safetensors"
te_sd_size = "5GB"
clip_sd_path = savepath.removesuffix("/") + "/text_encoder"
clip_sd_pattern = "model{suffix}.safetensors"
clip_sd_size = "10GB"
vae_sd_path = savepath.removesuffix("/") + "/vae"
vae_sd_pattern = "diffusion_pytorch_model{suffix}.safetensors"
vae_sd_size = "10GB"
print_resource_usage() #
metadata = {"format": "pt", **read_safetensors_metadata(loadpath)}
clear_cache()
print_resource_usage() #
if "vae" not in use_original:
vae_sd = extract_norm_flux_module_sd(loadpath, torch.bfloat16, dequant, "VAE",
keys_flux_vae)
to_safetensors_flux_module(vae_sd, vae_sd_path, vae_sd_pattern, vae_sd_size,
quantization, "VAE", None)
clear_sd(vae_sd)
print_resource_usage() #
if "text_encoder" not in use_original:
clip_sd = extract_norm_flux_module_sd(loadpath, torch.bfloat16, dequant, "Text Encoder",
keys_flux_clip)
to_safetensors_flux_module(clip_sd, clip_sd_path, clip_sd_pattern, clip_sd_size,
quantization, "Text Encoder", None)
clear_sd(clip_sd)
print_resource_usage() #
if "text_encoder_2" not in use_original:
te_sd = extract_norm_flux_module_sd(loadpath, dtype, dequant, "Text Encoder 2",
keys_flux_t5xxl)
to_safetensors_flux_module(te_sd, te_sd_path, te_sd_pattern, te_sd_size,
quantization, "Text Encoder 2", None)
clear_sd(te_sd)
print_resource_usage() #
unet_sd = extract_normalized_flux_state_dict_sharded(loadpath, dtype, dequant,
unet_temp_path, unet_sd_pattern, unet_temp_size)
clear_cache()
print_resource_usage() #
unet_sd = convert_flux_transformer_sd_to_diffusers_sharded(unet_sd, unet_temp_path,
unet_sd_pattern, unet_temp_size)
clear_cache()
print_resource_usage() #
to_safetensors_flux_module(unet_sd, unet_sd_path, unet_sd_pattern, unet_sd_size,
quantization, "Transformer", metadata)
clear_sd(unet_sd)
print_resource_usage() #
save_flux_other_diffusers(savepath, model_type, use_original)
print_resource_usage() #
def convert_url_to_diffusers_flux(url, civitai_key="", is_upload_sf=False, data_type="bf16",
model_type="dev", dequant=False, use_original=["vae", "text_encoder"],
hf_user="", hf_repo="", q=None, progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Start converting...")
temp_dir = "."
print_resource_usage() #
new_file = get_download_file(temp_dir, url, civitai_key)
if not new_file:
print(f"Not found: {url}")
return ""
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
dtype = torch.bfloat16
quantization = False
if data_type == "fp8": dtype = torch.float8_e4m3fn
elif data_type == "fp16": dtype = torch.float16
elif data_type == "qfloat8":
dtype = torch.bfloat16
quantization = True
else: dtype = torch.bfloat16
new_repo_id = f"{hf_user}/{Path(new_repo_name).stem}"
if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
flux_to_diffusers_lowmem(new_file, new_repo_name, dtype, quantization, model_type, dequant, use_original, new_repo_id)
"""if is_upload_sf:
import shutil
shutil.move(str(Path(new_file).resolve()), str(Path(new_repo_name, Path(new_file).name).resolve()))
else: os.remove(new_file)"""
progress(1, desc="Converted.")
q.put(new_repo_name)
return new_repo_name
def convert_url_to_fixed_flux_safetensors(url, civitai_key="", is_upload_sf=False, data_type="bf16",
model_type="dev", dequant=False, q=None, progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Start converting...")
temp_dir = "."
print_resource_usage() #
new_file = get_download_file(temp_dir, url, civitai_key)
if not new_file:
print(f"Not found: {url}")
return ""
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
dtype = torch.bfloat16
quantization = False
if data_type == "fp8": dtype = torch.float8_e4m3fn
elif data_type == "fp16": dtype = torch.float16
elif data_type == "qfloat8":
dtype = torch.bfloat16
quantization = True
else: dtype = torch.bfloat16
fix_flux_safetensors(new_file, new_repo_name, dtype, model_type, dequant)
os.remove(new_file)
progress(1, desc="Converted.")
q.put(new_repo_name)
return new_repo_name
def convert_url_to_diffusers_repo_flux(dl_url, hf_user, hf_repo, hf_token, civitai_key="", is_private=True, is_overwrite=False,
is_upload_sf=False, data_type="bf16", model_type="dev", dequant=False,
repo_urls=[], fix_only=False, use_original=["vae", "text_encoder"],
progress=gr.Progress(track_tqdm=True)):
import multiprocessing as mp
import shutil
if not hf_user:
print(f"Invalid user name: {hf_user}")
progress(1, desc=f"Invalid user name: {hf_user}")
return gr.update(value=repo_urls, choices=repo_urls), gr.update(value="")
if hf_token and not os.environ.get("HF_TOKEN"): os.environ['HF_TOKEN'] = hf_token
if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY")
q = mp.Queue()
if fix_only:
p = mp.Process(target=convert_url_to_fixed_flux_safetensors, args=(dl_url, civitai_key,
is_upload_sf, data_type, model_type, dequant, q))
#new_path = convert_url_to_fixed_flux_safetensors(dl_url, civitai_key, is_upload_sf, data_type, model_type, dequant)
else:
p = mp.Process(target=convert_url_to_diffusers_flux, args=(dl_url, civitai_key,
is_upload_sf, data_type, model_type, dequant, use_original, hf_user, hf_repo, q))
#new_path = convert_url_to_diffusers_flux(dl_url, civitai_key, is_upload_sf, data_type, model_type, dequant)
p.start()
new_path = q.get()
p.join()
if not new_path: return ""
new_repo_id = f"{hf_user}/{Path(new_path).stem}"
if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
if not is_repo_name(new_repo_id):
print(f"Invalid repo name: {new_repo_id}")
progress(1, desc=f"Invalid repo name: {new_repo_id}")
return gr.update(value=repo_urls, choices=repo_urls), gr.update(value="")
if not is_overwrite and is_repo_exists(new_repo_id):
print(f"Repo already exists: {new_repo_id}")
progress(1, desc=f"Repo already exists: {new_repo_id}")
return gr.update(value=repo_urls, choices=repo_urls), gr.update(value="")
#save_readme_md(new_path, dl_url)
repo_url = create_diffusers_repo(new_repo_id, new_path, is_private, is_overwrite)
shutil.rmtree(new_path)
if not repo_urls: repo_urls = []
repo_urls.append(repo_url)
md = "Your new repo:<br>"
for u in repo_urls:
md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
return gr.update(value=repo_urls, choices=repo_urls), gr.update(value=md)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--url", default=None, type=str, required=False, help="URL of the model to convert.")
parser.add_argument("--file", default=None, type=str, required=False, help="Filename of the model to convert.")
parser.add_argument("--fix", action="store_true", help="Only fix the keys of the local model.")
parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
parser.add_argument("--dtype", type=str, default="fp8")
parser.add_argument("--model", type=str, default="dev")
parser.add_argument("--dequant", action="store_true", help="Dequantize model.")
args = parser.parse_args()
assert (args.url, args.file) != (None, None), "Must provide --url or --file!"
dtype = torch.bfloat16
quantization = False
if args.dtype == "fp8": dtype = torch.float8_e4m3fn
elif args.dtype == "fp16": dtype = torch.float16
elif args.dtype == "qfloat8":
dtype = torch.bfloat16
quantization = True
else: dtype = torch.bfloat16
use_original = ["vae", "text_encoder"]
new_repo_id = ""
use_local = True
if args.file is not None and Path(args.file).exists():
if args.fix: normalize_flux_state_dict(args.file, ".", dtype, args.dequant)
else: flux_to_diffusers_lowmem(args.file, Path(args.file).stem, dtype, quantization,
args.model, args.dequant, use_original, new_repo_id, use_local)
elif args.url is not None:
convert_url_to_diffusers_flux(args.url, args.civitai_key, False, args.dtype, args.model,
args.dequant)
|