File size: 51,940 Bytes
501231e
 
 
 
 
 
 
 
 
 
 
 
dfe0a88
 
 
 
501231e
dfe0a88
 
 
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6d055
501231e
dfe0a88
 
 
 
 
 
 
 
 
 
 
 
7700be4
dfe0a88
 
7700be4
 
dfe0a88
 
 
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bffe899
501231e
 
 
 
 
 
bffe899
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7700be4
501231e
 
 
dfe0a88
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bffe899
501231e
 
 
 
bffe899
 
501231e
 
 
 
 
 
 
 
 
 
 
 
 
bffe899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501231e
bffe899
 
 
 
 
 
 
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe0a88
501231e
 
 
 
 
 
 
 
dfe0a88
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe0a88
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe0a88
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe0a88
501231e
 
 
 
 
 
 
 
 
 
dfe0a88
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe0a88
501231e
 
 
 
 
8217c9e
 
501231e
 
 
dfe0a88
501231e
 
 
 
 
 
 
 
8217c9e
501231e
 
 
3d57406
 
501231e
3d57406
501231e
 
 
8217c9e
501231e
8217c9e
501231e
 
 
 
8217c9e
501231e
 
 
 
8217c9e
501231e
 
 
 
8217c9e
 
 
 
 
3d57406
8217c9e
 
501231e
 
 
 
 
 
 
 
8217c9e
501231e
 
8217c9e
501231e
 
 
 
 
 
 
dfe0a88
501231e
 
 
 
 
 
 
 
bffe899
501231e
 
 
 
 
bffe899
501231e
 
bffe899
dfe0a88
501231e
dfe0a88
 
501231e
 
 
 
 
dfe0a88
 
501231e
 
 
 
 
dfe0a88
 
501231e
 
 
 
 
dfe0a88
 
501231e
 
dfe0a88
 
 
 
 
 
 
bffe899
 
 
501231e
 
dfe0a88
 
8217c9e
dfe0a88
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe0a88
501231e
dfe0a88
 
501231e
 
 
 
 
dfe0a88
 
501231e
 
 
 
 
dfe0a88
 
501231e
 
 
 
 
dfe0a88
 
501231e
 
dfe0a88
 
501231e
 
dfe0a88
 
501231e
 
dfe0a88
 
8217c9e
dfe0a88
501231e
 
 
 
 
 
dfe0a88
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe0a88
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bffe899
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bffe899
501231e
 
 
bffe899
 
501231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
import json
import torch
from safetensors.torch import load_file, save_file
from pathlib import Path
import gc
import gguf
from dequant import dequantize_tensor # https://github.com/city96/ComfyUI-GGUF

import os
import argparse
import gradio as gr
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning

import subprocess
subprocess.run('pip cache purge', shell=True)

import spaces
@spaces.GPU()
def spaces_dummy():
    pass

flux_dev_repo = "ChuckMcSneed/FLUX.1-dev"
flux_schnell_repo = "black-forest-labs/FLUX.1-schnell"
system_temp_dir = "temp"

device = "cuda" if torch.cuda.is_available() else "cpu"
torch.set_grad_enabled(False)

GGUF_QTYPE = [gguf.GGMLQuantizationType.Q8_0, gguf.GGMLQuantizationType.Q5_1,
    gguf.GGMLQuantizationType.Q5_0, gguf.GGMLQuantizationType.Q4_1,
    gguf.GGMLQuantizationType.Q4_0, gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16]

TORCH_DTYPE = [torch.float32, torch.float, torch.float64, torch.double, torch.float16, torch.half,
    torch.bfloat16, torch.complex32, torch.chalf, torch.complex64, torch.cfloat,
    torch.complex128, torch.cdouble, torch.uint8, torch.uint16, torch.uint32, torch.uint64,
    torch.int8, torch.int16, torch.short, torch.int32, torch.int, torch.int64, torch.long,
    torch.bool, torch.float8_e4m3fn, torch.float8_e5m2]

TORCH_QUANTIZED_DTYPE = [torch.quint8, torch.qint8, torch.qint32, torch.quint4x2]

def list_sub(a, b):
    return [e for e in a if e not in b]

def is_repo_name(s):
    import re
    return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)

def clear_cache():
    torch.cuda.empty_cache()
    gc.collect()

def clear_sd(sd: dict):
    for k in list(sd.keys()):
        sd.pop(k)
    del sd
    torch.cuda.empty_cache()
    gc.collect()

def clone_sd(sd: dict):
    from copy import deepcopy
    print("Cloning state dict.")
    for k in list(sd.keys()):
        sd[k] = deepcopy(sd.pop(k))
        #sd[k] = sd.pop(k).detach().clone().to(device="cpu")
    torch.cuda.empty_cache()
    gc.collect()

def print_resource_usage():
    import psutil
    cpu_usage = psutil.cpu_percent()
    ram_usage = psutil.virtual_memory().used / psutil.virtual_memory().total * 100
    print(f"CPU usage: {cpu_usage}% / RAM usage: {ram_usage}%")

def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)):
    progress(0, desc="Start downloading...")
    url = url.strip()
    if "drive.google.com" in url:
        original_dir = os.getcwd()
        os.chdir(directory)
        os.system(f"gdown --fuzzy {url}")
        os.chdir(original_dir)
    elif "huggingface.co" in url:
        url = url.replace("?download=true", "")
        if "/blob/" in url:
            url = url.replace("/blob/", "/resolve/")
            os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
        else:
            os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
    elif "civitai.com" in url:
        if "?" in url:
            url = url.split("?")[0]
        if civitai_api_key:
            url = url + f"?token={civitai_api_key}"
            os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
        else:
            print("You need an API key to download Civitai models.")
    else:
        os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")

def get_local_model_list(dir_path):
    model_list = []
    valid_extensions = ('.safetensors')
    for file in Path(dir_path).glob("*"):
        if file.suffix in valid_extensions:
            file_path = str(Path(f"{dir_path}/{file.name}"))
            model_list.append(file_path)
    return model_list

def get_download_file(temp_dir, url, civitai_key, progress=gr.Progress(track_tqdm=True)):
    if not "http" in url and is_repo_name(url) and not Path(url).exists():
        print(f"Use HF Repo: {url}")
        new_file = url
    elif not "http" in url and Path(url).exists():
        print(f"Use local file: {url}")
        new_file = url
    elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
        print(f"File to download alreday exists: {url}")
        new_file = f"{temp_dir}/{url.split('/')[-1]}"
    else:
        print(f"Start downloading: {url}")
        before = get_local_model_list(temp_dir)
        try:
            download_thing(temp_dir, url.strip(), civitai_key)
        except Exception:
            print(f"Download failed: {url}")
            return ""
        after = get_local_model_list(temp_dir)
        new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
    if not new_file:
        print(f"Download failed: {url}")
        return ""
    print(f"Download completed: {url}")
    return new_file

def save_readme_md(dir, url):
    orig_url = ""
    if "http" in url:
        orig_url = url
    if orig_url:
       md = f"""---

license: other

license_name: flux-1-dev-non-commercial-license

license_link: https://huggingface.co./black-forest-labs/FLUX.1-dev/blob/main/LICENSE.

language:

- en

library_name: diffusers

pipeline_tag: text-to-image

tags:

- text-to-image

- Flux

---

Converted from [{orig_url}]({orig_url}).

"""
    else:
        md = f"""---

license: other

license_name: flux-1-dev-non-commercial-license

license_link: https://huggingface.co./black-forest-labs/FLUX.1-dev/blob/main/LICENSE.

language:

- en

library_name: diffusers

pipeline_tag: text-to-image

tags:

- text-to-image

- Flux

---

"""
    path = str(Path(dir, "README.md"))
    with open(path, mode='w', encoding="utf-8") as f:
        f.write(md)

def is_repo_exists(repo_id):
    from huggingface_hub import HfApi
    api = HfApi()
    try:
        if api.repo_exists(repo_id=repo_id): return True
        else: return False
    except Exception as e:
        print(f"Error: Failed to connect {repo_id}. ")
        return True # for safe

def create_diffusers_repo(new_repo_id, diffusers_folder, is_private, is_overwrite, progress=gr.Progress(track_tqdm=True)):
    from huggingface_hub import HfApi
    import os
    hf_token = os.environ.get("HF_TOKEN")
    api = HfApi()
    try:
        progress(0, desc="Start uploading...")
        api.create_repo(repo_id=new_repo_id, token=hf_token, private=is_private, exist_ok=is_overwrite)
        for path in Path(diffusers_folder).glob("*"):
            if path.is_dir():
                api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
            elif path.is_file():
                api.upload_file(repo_id=new_repo_id, path_or_fileobj=str(path), path_in_repo=path.name, token=hf_token)
        progress(1, desc="Uploaded.")
        url = f"https://huggingface.co./{new_repo_id}"
    except Exception as e:
        print(f"Error: Failed to upload to {new_repo_id}. ")
        print(e)
        return ""
    return url

# https://github.com/huggingface/diffusers/blob/main/scripts/convert_flux_to_diffusers.py 
# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
with torch.no_grad(), torch.autocast(device):
    @torch.jit.script
    def swap_scale_shift(weight):
        shift, scale = weight.chunk(2, dim=0)
        new_weight = torch.cat([scale, shift], dim=0)
        return new_weight

with torch.no_grad(), torch.autocast(device):
    def convert_flux_transformer_checkpoint_to_diffusers(

        original_state_dict, num_layers, num_single_layers, inner_dim, mlp_ratio=4.0,

        progress=gr.Progress(track_tqdm=True)):
        def conv(cdict: dict, odict: dict, ckey: str, okey: str):
            if okey in odict.keys():
                progress(0, desc=f"Converting {okey} => {ckey}")
                print(f"Converting {okey} => {ckey}")
                cdict[ckey] = odict.pop(okey)
                gc.collect()

        def convswap(cdict: dict, odict: dict, ckey: str, okey: str):
            if okey in odict.keys():
                progress(0, desc=f"Converting (swap) {okey} => {ckey}")
                print(f"Converting {okey} => {ckey} (swap)")
                cdict[ckey] = swap_scale_shift(odict.pop(okey))
                gc.collect()

        def convqkv(cdict: dict, odict: dict, i: int):
            keys = odict.keys()
            if (f"double_blocks.{i}.img_attn.qkv.weight" in keys or f"double_blocks.{i}.txt_attn.qkv.weight" in keys\
                or f"double_blocks.{i}.img_attn.qkv.bias" in keys or f"double_blocks.{i}.txt_attn.qkv.bias" in keys)\
                and (f"double_blocks.{i}.img_attn.qkv.weight" not in keys or f"double_blocks.{i}.txt_attn.qkv.weight" not in keys\
                     or f"double_blocks.{i}.img_attn.qkv.bias" not in keys or f"double_blocks.{i}.txt_attn.qkv.bias" not in keys):
                progress(0, desc=f"Key error in converting Q, K, V (double_blocks.{i}).")
                print(f"Key error in converting Q, K, V (double_blocks.{i}).")
                return
            progress(0, desc=f"Converting Q, K, V (double_blocks.{i}).")
            print(f"Converting Q, K, V (double_blocks.{i}).")
            sample_q, sample_k, sample_v = torch.chunk(
                odict.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0
            )
            context_q, context_k, context_v = torch.chunk(
                odict.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
            )
            sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
                odict.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
            )
            context_q_bias, context_k_bias, context_v_bias = torch.chunk(
                odict.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
            )
            cdict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
            cdict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
            cdict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
            cdict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
            cdict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
            cdict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
            cdict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
            cdict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
            cdict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
            cdict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
            cdict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
            cdict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
            gc.collect()

        def convqkvmlp(cdict: dict, odict: dict, i: int, inner_dim: int, mlp_ratio: float):
            keys = odict.keys()
            if (f"single_blocks.{i}.linear1.weight" in keys or f"single_blocks.{i}.linear1.bias" in keys)\
                and (f"single_blocks.{i}.linear1.weight" not in keys or f"single_blocks.{i}.linear1.bias" not in keys):
                progress(0, desc=f"Key error in converting Q, K, V, mlp (single_blocks.{i}).")
                print(f"Key error in converting Q, K, V, mlp (single_blocks.{i}).")
                return
            progress(0, desc=f"Converting Q, K, V, mlp (single_blocks.{i}).")
            print(f"Converting Q, K, V, mlp (single_blocks.{i}).")
            mlp_hidden_dim = int(inner_dim * mlp_ratio)
            split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
            q, k, v, mlp = torch.split(odict.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0)
            q_bias, k_bias, v_bias, mlp_bias = torch.split(
                odict.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0
            )
            cdict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q])
            cdict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias])
            cdict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k])
            cdict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias])
            cdict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v])
            cdict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias])
            cdict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp])
            cdict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias])
            gc.collect()

        converted_state_dict = {}
        progress(0, desc="Converting FLUX.1 state dict to Diffusers format.")

        ## time_text_embed.timestep_embedder <-  time_in
        conv(converted_state_dict, original_state_dict, "time_text_embed.timestep_embedder.linear_1.weight", "time_in.in_layer.weight")
        conv(converted_state_dict, original_state_dict, "time_text_embed.timestep_embedder.linear_1.bias", "time_in.in_layer.bias")
        conv(converted_state_dict, original_state_dict, "time_text_embed.timestep_embedder.linear_2.weight", "time_in.out_layer.weight")
        conv(converted_state_dict, original_state_dict, "time_text_embed.timestep_embedder.linear_2.bias", "time_in.out_layer.bias")

        ## time_text_embed.text_embedder <- vector_in
        conv(converted_state_dict, original_state_dict, "time_text_embed.text_embedder.linear_1.weight", "vector_in.in_layer.weight")
        conv(converted_state_dict, original_state_dict, "time_text_embed.text_embedder.linear_1.bias", "vector_in.in_layer.bias")
        conv(converted_state_dict, original_state_dict, "time_text_embed.text_embedder.linear_2.weight", "vector_in.out_layer.weight")
        conv(converted_state_dict, original_state_dict, "time_text_embed.text_embedder.linear_2.bias", "vector_in.out_layer.bias")

        # guidance
        has_guidance = any("guidance" in k for k in original_state_dict)
        if has_guidance:
            conv(converted_state_dict, original_state_dict, "time_text_embed.guidance_embedder.linear_1.weight", "guidance_in.in_layer.weight")
            conv(converted_state_dict, original_state_dict, "time_text_embed.guidance_embedder.linear_1.bias", "guidance_in.in_layer.bias")
            conv(converted_state_dict, original_state_dict, "time_text_embed.guidance_embedder.linear_2.weight", "guidance_in.out_layer.weight")
            conv(converted_state_dict, original_state_dict, "time_text_embed.guidance_embedder.linear_2.bias", "guidance_in.out_layer.bias")

        # context_embedder
        conv(converted_state_dict, original_state_dict, "context_embedder.weight", "txt_in.weight")
        conv(converted_state_dict, original_state_dict, "context_embedder.bias", "txt_in.bias")

        # x_embedder
        conv(converted_state_dict, original_state_dict, "x_embedder.weight", "img_in.weight")
        conv(converted_state_dict, original_state_dict, "x_embedder.bias", "img_in.bias")

        progress(0.25, desc="Converting FLUX.1 state dict to Diffusers format.")
        # double transformer blocks
        for i in range(num_layers):
            block_prefix = f"transformer_blocks.{i}."
            # norms.
            ## norm1
            conv(converted_state_dict, original_state_dict, f"{block_prefix}norm1.linear.weight", f"double_blocks.{i}.img_mod.lin.weight")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}norm1.linear.bias", f"double_blocks.{i}.img_mod.lin.bias")
            ## norm1_context
            conv(converted_state_dict, original_state_dict, f"{block_prefix}norm1_context.linear.weight", f"double_blocks.{i}.txt_mod.lin.weight")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}norm1_context.linear.bias", f"double_blocks.{i}.txt_mod.lin.bias")
            # Q, K, V
            convqkv(converted_state_dict, original_state_dict, i)
            # qk_norm
            conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.norm_q.weight", f"double_blocks.{i}.img_attn.norm.query_norm.scale")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.norm_k.weight", f"double_blocks.{i}.img_attn.norm.key_norm.scale")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.norm_added_q.weight", f"double_blocks.{i}.txt_attn.norm.query_norm.scale")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.norm_added_k.weight", f"double_blocks.{i}.txt_attn.norm.key_norm.scale")
            # ff img_mlp
            conv(converted_state_dict, original_state_dict, f"{block_prefix}ff.net.0.proj.weight", f"double_blocks.{i}.img_mlp.0.weight")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}ff.net.0.proj.bias", f"double_blocks.{i}.img_mlp.0.bias")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}ff.net.2.weight", f"double_blocks.{i}.img_mlp.2.weight")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}ff.net.2.bias", f"double_blocks.{i}.img_mlp.2.bias")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}ff_context.net.0.proj.weight", f"double_blocks.{i}.txt_mlp.0.weight")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}ff_context.net.0.proj.bias", f"double_blocks.{i}.txt_mlp.0.bias")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}ff_context.net.2.weight", f"double_blocks.{i}.txt_mlp.2.weight")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}ff_context.net.2.bias", f"double_blocks.{i}.txt_mlp.2.bias")
            # output projections.
            conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.to_out.0.weight", f"double_blocks.{i}.img_attn.proj.weight")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.to_out.0.bias", f"double_blocks.{i}.img_attn.proj.bias")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.to_add_out.weight", f"double_blocks.{i}.txt_attn.proj.weight")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.to_add_out.bias", f"double_blocks.{i}.txt_attn.proj.bias")

        progress(0.5, desc="Converting FLUX.1 state dict to Diffusers format.")
        # single transfomer blocks
        for i in range(num_single_layers):
            block_prefix = f"single_transformer_blocks.{i}."
            # norm.linear  <- single_blocks.0.modulation.lin
            conv(converted_state_dict, original_state_dict, f"{block_prefix}norm.linear.weight", f"single_blocks.{i}.modulation.lin.weight")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}norm.linear.bias", f"single_blocks.{i}.modulation.lin.bias")
            # Q, K, V, mlp
            convqkvmlp(converted_state_dict, original_state_dict, i, inner_dim, mlp_ratio)
            # qk norm
            conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.norm_q.weight", f"single_blocks.{i}.norm.query_norm.scale")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}attn.norm_k.weight", f"single_blocks.{i}.norm.key_norm.scale")
            # output projections.
            conv(converted_state_dict, original_state_dict, f"{block_prefix}proj_out.weight", f"single_blocks.{i}.linear2.weight")
            conv(converted_state_dict, original_state_dict, f"{block_prefix}proj_out.bias", f"single_blocks.{i}.linear2.bias")

        progress(0.75, desc="Converting FLUX.1 state dict to Diffusers format.")
        conv(converted_state_dict, original_state_dict, "proj_out.weight", "final_layer.linear.weight")
        conv(converted_state_dict, original_state_dict, "proj_out.bias", "final_layer.linear.bias")
        convswap(converted_state_dict, original_state_dict, "norm_out.linear.weight", "final_layer.adaLN_modulation.1.weight")
        convswap(converted_state_dict, original_state_dict, "norm_out.linear.bias", "final_layer.adaLN_modulation.1.bias")

        progress(1, desc="Converting FLUX.1 state dict to Diffusers format.")
        return converted_state_dict

# read safetensors metadata
def read_safetensors_metadata(path):
    with open(path, 'rb') as f:       
        header_size = int.from_bytes(f.read(8), 'little')
        header_json = f.read(header_size).decode('utf-8')
        header = json.loads(header_json)
        metadata = header.get('__metadata__', {})
        return metadata.copy()

def normalize_key(k: str):
    return k.replace("vae.", "").replace("model.diffusion_model.", "")\
        .replace("text_encoders.clip_l.transformer.", "")\
        .replace("text_encoders.t5xxl.transformer.", "")

def load_json_list(path: str):
    try:
        with open(path, encoding='utf-8') as f:
            return list(json.load(f))
    except Exception as e:
        print(e)
        return []

# https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/modeling_utils.py
# https://huggingface.co./docs/huggingface_hub/v0.24.5/package_reference/serialization
# https://huggingface.co./docs/huggingface_hub/index
with torch.no_grad():
    def to_safetensors(sd: dict, path: str, pattern: str, size: str, progress=gr.Progress(track_tqdm=True)):
        from huggingface_hub import save_torch_state_dict
        print(f"Saving a temporary file to disk: {path}")
        os.makedirs(path, exist_ok=True)
        try:
            for k, v in sd.items():
                sd[k] = v.to(device="cpu")
            save_torch_state_dict(sd, path, filename_pattern=pattern, max_shard_size=size)
        except Exception as e:
            print(e)

# https://discuss.huggingface.co/t/t5forconditionalgeneration-checkpoint-size-mismatch-19418/24119
# https://github.com/huggingface/transformers/issues/13769
# https://github.com/huggingface/optimum-quanto/issues/278
# https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/serialization/_torch.py
# https://huggingface.co./docs/accelerate/usage_guides/big_modeling
with torch.no_grad():
    def to_safetensors_flux_module(sd: dict, path: str, pattern: str, size: str,

                                        quantization: bool=False, name: str = "",

                                        metadata: dict | None = None, progress=gr.Progress(track_tqdm=True)):
        from huggingface_hub import save_torch_state_dict, save_torch_model
        from accelerate import init_empty_weights
        try:
            progress(0, desc=f"Preparing to save FLUX.1 {name} to Diffusers format.")
            print(f"Preparing to save FLUX.1 {name} to Diffusers format.")
            for k, v in sd.items():
                sd[k] = v.to(device="cpu")
            progress(0, desc=f"Loading FLUX.1 {name}.")
            print(f"Loading FLUX.1 {name}.")
            os.makedirs(path, exist_ok=True)
            if quantization:
                progress(0.5, desc=f"Saving quantized FLUX.1 {name} to {path}")
                print(f"Saving quantized FLUX.1 {name} to {path}")
            else:
                progress(0.5, desc=f"Saving FLUX.1 {name} to: {path}")
                if False and path.endswith("/transformer"):
                    from diffusers import FluxTransformer2DModel
                    has_guidance = any("guidance" in k for k in sd)
                    with init_empty_weights():
                        model = FluxTransformer2DModel(guidance_embeds=has_guidance)
                    model.to("cpu")
                    model.load_state_dict(sd, strict=True)
                    print(f"Saving FLUX.1 {name} to: {path} (FluxTransformer2DModel)")
                    if metadata is not None:
                        progress(0.5, desc=f"Saving FLUX.1 {name} metadata to: {path}")
                        save_torch_model(model=model, save_directory=path,
                                            filename_pattern=pattern, max_shard_size=size, metadata=metadata)
                    else:
                        save_torch_model(model=model, save_directory=path,
                                        filename_pattern=pattern, max_shard_size=size)
                else:
                    print(f"Saving FLUX.1 {name} to: {path}")
                    if metadata is not None:
                        progress(0.5, desc=f"Saving FLUX.1 {name} metadata to: {path}")
                        save_torch_state_dict(state_dict=sd, save_directory=path,
                                            filename_pattern=pattern, max_shard_size=size, metadata=metadata)
                    else:
                        save_torch_state_dict(state_dict=sd, save_directory=path,
                                        filename_pattern=pattern, max_shard_size=size)
                progress(1, desc=f"Saved FLUX.1 {name} to: {path}")
                print(f"Saved FLUX.1 {name} to: {path}")
        except Exception as e:
            print(e)
        finally:
            gc.collect()

flux_transformer_json = "flux_transformer_keys.json"
flux_t5xxl_json = "flux_t5xxl_keys.json"
flux_clip_json = "flux_clip_keys.json"
flux_vae_json = "flux_vae_keys.json"
keys_flux_t5xxl = set(load_json_list(flux_t5xxl_json))
keys_flux_transformer = set(load_json_list(flux_transformer_json))
keys_flux_clip = set(load_json_list(flux_clip_json))
keys_flux_vae = set(load_json_list(flux_vae_json))

with torch.no_grad():
    def dequant_tensor(v: torch.Tensor, dtype: torch.dtype, dequant: bool):
        try:
            #print(f"shape: {v.shape} / dim: {v.ndim}")
            if dequant:
                qtype = v.tensor_type
                if v.dtype in TORCH_DTYPE: return v.to(dtype) if v.dtype != dtype else v
                elif qtype in GGUF_QTYPE: return dequantize_tensor(v, dtype)
                elif torch.dtype in TORCH_QUANTIZED_DTYPE: return torch.dequantize(v).to(dtype)
                else: return torch.dequantize(v).to(dtype)
            else: return v.to(dtype) if v.dtype != dtype else v
        except Exception as e:
            print(e)

with torch.no_grad():
    def normalize_flux_state_dict(path: str, savepath: str, dtype: torch.dtype = torch.bfloat16,

                                dequant: bool = False, progress=gr.Progress(track_tqdm=True)):
        progress(0, desc=f"Loading and normalizing FLUX.1 safetensors: {path}")
        print(f"Loading and normalizing FLUX.1 safetensors: {path}")
        new_sd = dict()
        state_dict = load_file(path, device="cpu")
        try:
            for k in list(state_dict.keys()):
                v = state_dict.pop(k)
                nk = normalize_key(k)
                print(f"{k} => {nk}") #
                new_sd[nk] = dequant_tensor(v, dtype, dequant)
        except Exception as e:
            print(e)
            return
        finally:
            clear_sd(state_dict)
        new_path = str(Path(savepath, Path(path).stem + "_fixed" + Path(path).suffix))
        metadata = read_safetensors_metadata(path)
        progress(0.5, desc=f"Saving FLUX.1 safetensors: {new_path}")
        print(f"Saving FLUX.1 safetensors: {new_path}")
        os.makedirs(savepath, exist_ok=True)
        save_file(new_sd, new_path, metadata={"format": "pt", **metadata})
        progress(1, desc=f"Saved FLUX.1 safetensors: {new_path}")
        print(f"Saved FLUX.1 safetensors: {new_path}")
        clear_sd(new_sd)

with torch.no_grad():
    def extract_norm_flux_module_sd(path: str, dtype: torch.dtype = torch.bfloat16,

                                        dequant: bool = False, name: str = "", keys: set = {},

                                        progress=gr.Progress(track_tqdm=True)):
        progress(0, desc=f"Loading and normalizing FLUX.1 {name} safetensors: {path}")
        print(f"Loading and normalizing FLUX.1 {name} safetensors: {path}")
        new_sd = dict()
        state_dict = load_file(path, device="cpu")
        try:
            for k in list(state_dict.keys()):
                if k not in keys: state_dict.pop(k)
            gc.collect()
            for k in list(state_dict.keys()):
                v = state_dict.pop(k)
                if k in keys:
                    nk = normalize_key(k)
                    progress(0.5, desc=f"{k} => {nk}") #
                    print(f"{k} => {nk}") #
                    new_sd[nk] = dequant_tensor(v, dtype, dequant)
                    #print_resource_usage() #
        except Exception as e:
            print(e)
            return None
        finally:
            progress(1, desc=f"Normalized FLUX.1 {name} safetensors: {path}")
            print(f"Normalized FLUX.1 {name} safetensors: {path}")
            clear_sd(state_dict)
        return new_sd

with torch.no_grad():
    def convert_flux_transformer_sd_to_diffusers(sd: dict, progress=gr.Progress(track_tqdm=True)):
        progress(0, desc="Converting FLUX.1 state dict to Diffusers format.")
        print("Converting FLUX.1 state dict to Diffusers format.")
        num_layers = 19
        num_single_layers = 38
        inner_dim = 3072
        mlp_ratio = 4.0
        try:
            sd = convert_flux_transformer_checkpoint_to_diffusers(
                sd, num_layers, num_single_layers, inner_dim, mlp_ratio=mlp_ratio
            )
        except Exception as e:
            print(e)
        finally:
            progress(1, desc="Converted FLUX.1 state dict to Diffusers format.")
            print("Converted FLUX.1 state dict to Diffusers format.")
            gc.collect()
        return sd

with torch.no_grad():
    def load_sharded_safetensors(path: str):
        import glob
        sd = {}
        try:
            for filepath in glob.glob(f"{path}/*.safetensors"):
                sharded_sd = load_file(str(filepath), device="cpu")
                for k, v in sharded_sd.items():
                    sharded_sd[k] = v.to(device="cpu")
                sd = sd | sharded_sd.copy()
                clear_sd(sharded_sd)
        except Exception as e:
                print(e)
        return sd
    
# https://huggingface.co./docs/safetensors/api/torch
with torch.no_grad():
    def convert_flux_transformer_sd_to_diffusers_sharded(sd: dict, path: str, pattern: str,

                                                size: str, progress=gr.Progress(track_tqdm=True)):
        from huggingface_hub import save_torch_state_dict#, load_torch_model
        import glob
        try:
            progress(0, desc=f"Saving temporary files to disk: {path}")
            print(f"Saving temporary files to disk: {path}")
            os.makedirs(path, exist_ok=True)
            for k, v in sd.items():
                if k in set(keys_flux_transformer): sd[k] = v.to(device="cpu")
            save_torch_state_dict(sd, path, filename_pattern=pattern, max_shard_size=size)
            clear_sd(sd)
            progress(0.25, desc=f"Saved temporary files to disk: {path}")
            print(f"Saved temporary files to disk: {path}")
            for filepath in glob.glob(f"{path}/*.safetensors"):
                progress(0.25, desc=f"Processing temporary files: {str(filepath)}")
                print(f"Processing temporary files: {str(filepath)}")
                sharded_sd = load_file(str(filepath), device="cpu")
                sharded_sd = convert_flux_transformer_sd_to_diffusers(sharded_sd)
                for k, v in sharded_sd.items():
                    sharded_sd[k] = v.to(device="cpu")
                save_file(sharded_sd, str(filepath))
                clear_sd(sharded_sd)
            print(f"Loading temporary files from disk: {path}")
            sd = load_sharded_safetensors(path)
            print(f"Loaded temporary files from disk: {path}")
        except Exception as e:
            print(e)
        return sd

with torch.no_grad():
    def extract_normalized_flux_state_dict_sharded(loadpath: str, dtype: torch.dtype,

         dequant: bool, path: str, pattern: str, size: str, progress=gr.Progress(track_tqdm=True)):
        from huggingface_hub import save_torch_state_dict#, load_torch_model
        import glob
        try:
            progress(0, desc=f"Loading model file: {loadpath}")
            print(f"Loading model file: {loadpath}")
            sd = load_file(loadpath, device="cpu")
            progress(0, desc=f"Saving temporary files to disk: {path}")
            print(f"Saving temporary files to disk: {path}")
            os.makedirs(path, exist_ok=True)
            for k, v in sd.items():
                sd[k] = v.to(device="cpu")
            save_torch_state_dict(sd, path, filename_pattern=pattern, max_shard_size=size)
            clear_sd(sd)
            progress(0.25, desc=f"Saved temporary files to disk: {path}")
            print(f"Saved temporary files to disk: {path}")
            for filepath in glob.glob(f"{path}/*.safetensors"):
                progress(0.25, desc=f"Processing temporary files: {str(filepath)}")
                print(f"Processing temporary files: {str(filepath)}")
                sharded_sd = extract_norm_flux_module_sd(str(filepath), dtype, dequant,
                                                         "Transformer", keys_flux_transformer)
                for k, v in sharded_sd.items():
                    sharded_sd[k] = v.to(device="cpu")
                save_file(sharded_sd, str(filepath))
                clear_sd(sharded_sd)
                print(f"Processed temporary files: {str(filepath)}")
            print(f"Loading temporary files from disk: {path}")
            sd = load_sharded_safetensors(path)
            print(f"Loaded temporary files from disk: {path}")
        except Exception as e:
            print(e)
        return sd

def download_repo(repo_name, path, use_original=["vae", "text_encoder"], progress=gr.Progress(track_tqdm=True)):
    from huggingface_hub import snapshot_download
    print(f"Downloading {repo_name}.")
    try:
        if "text_encoder_2" in use_original:
            snapshot_download(repo_id=repo_name, local_dir=path, ignore_patterns=["transformer/diffusion*.*", "*.sft", ".*", "README*", "*.md", "*.index", "*.jpg", "*.png", "*.webp"])
        else:
            snapshot_download(repo_id=repo_name, local_dir=path, ignore_patterns=["transformer/diffusion*.*", "text_encoder_2/model*.*", "*.sft", ".*", "README*", "*.md", "*.index", "*.jpg", "*.png", "*.webp"])
    except Exception as e:
        print(e)

def copy_nontensor_files(from_path, to_path, use_original=["vae", "text_encoder"]):
    import shutil
    if "text_encoder_2" in use_original:
        te_from = str(Path(from_path, "text_encoder_2"))
        te_to = str(Path(to_path, "text_encoder_2"))
        print(f"Copying Text Encoder 2 files {te_from} to {te_to}")
        shutil.copytree(te_from, te_to, ignore=shutil.ignore_patterns(".*", "README*", "*.md", "*.jpg", "*.png", "*.webp"), dirs_exist_ok=True)
    if "text_encoder" in use_original:
        te1_from = str(Path(from_path, "text_encoder"))
        te1_to = str(Path(to_path, "text_encoder"))
        print(f"Copying Text Encoder 1 files {te1_from} to {te1_to}")
        shutil.copytree(te1_from, te1_to, ignore=shutil.ignore_patterns(".*", "README*", "*.md", "*.jpg", "*.png", "*.webp"), dirs_exist_ok=True)
    if "vae" in use_original:
        vae_from = str(Path(from_path, "vae"))
        vae_to = str(Path(to_path, "vae"))
        print(f"Copying VAE files {vae_from} to {vae_to}")
        shutil.copytree(vae_from, vae_to, ignore=shutil.ignore_patterns(".*", "README*", "*.md", "*.jpg", "*.png", "*.webp"), dirs_exist_ok=True)
    tn2_from = str(Path(from_path, "tokenizer_2"))
    tn2_to = str(Path(to_path, "tokenizer_2"))
    print(f"Copying Tokenizer 2 files {tn2_from} to {tn2_to}")
    shutil.copytree(tn2_from, tn2_to, ignore=shutil.ignore_patterns(".*", "README*", "*.md", "*.jpg", "*.png", "*.webp"), dirs_exist_ok=True)
    print(f"Copying non-tensor files {from_path} to {to_path}")
    shutil.copytree(from_path, to_path, ignore=shutil.ignore_patterns("*.safetensors", "*.bin", "*.sft", ".*", "README*", "*.md", "*.index", "*.jpg", "*.png", "*.webp", "*.index.json"), dirs_exist_ok=True)
    
def save_flux_other_diffusers(path: str, model_type: str = "dev", use_original: list = ["vae", "text_encoder"], progress=gr.Progress(track_tqdm=True)):
    import shutil
    progress(0, desc="Loading FLUX.1 Components.")
    print("Loading FLUX.1 Components.")
    temppath = system_temp_dir
    if model_type == "schnell": repo = flux_schnell_repo
    else: repo = flux_dev_repo
    os.makedirs(temppath, exist_ok=True)
    os.makedirs(path, exist_ok=True)
    download_repo(repo, temppath, use_original)
    progress(0.5, desc="Saving FLUX.1 Components.")
    print("Saving FLUX.1 Components.")
    copy_nontensor_files(temppath, path, use_original)
    shutil.rmtree(temppath)

with torch.no_grad():
    def fix_flux_safetensors(loadpath: str, savepath: str, dtype: torch.dtype = torch.bfloat16,

                          quantization: bool = False, model_type: str = "dev", dequant: bool = False):
        save_flux_other_diffusers(savepath, model_type)
        normalize_flux_state_dict(loadpath, savepath, dtype, dequant)
        clear_cache()

with torch.no_grad(): # Much lower memory consumption, but higher disk load
    def flux_to_diffusers_lowmem(loadpath: str, savepath: str, dtype: torch.dtype = torch.bfloat16,

                          quantization: bool = False, model_type: str = "dev",

                          dequant: bool = False, use_original: list = ["vae", "text_encoder"],

                          new_repo_id: str = "", local: bool = False, progress=gr.Progress(track_tqdm=True)):
        unet_sd_path = savepath.removesuffix("/") + "/transformer"
        unet_sd_pattern = "diffusion_pytorch_model{suffix}.safetensors"
        unet_sd_size = "9.5GB"
        te_sd_path = savepath.removesuffix("/") + "/text_encoder_2"
        te_sd_pattern = "model{suffix}.safetensors"
        te_sd_size = "5GB"
        clip_sd_path = savepath.removesuffix("/") + "/text_encoder"
        clip_sd_pattern = "model{suffix}.safetensors"
        clip_sd_size = "9.5GB"
        vae_sd_path = savepath.removesuffix("/") + "/vae"
        vae_sd_pattern = "diffusion_pytorch_model{suffix}.safetensors"
        vae_sd_size = "9.5GB"
        print_resource_usage() #
        metadata = {"format": "pt", **read_safetensors_metadata(loadpath)}
        clear_cache()
        print_resource_usage() #
        if "vae" not in use_original:
            vae_sd = extract_norm_flux_module_sd(loadpath, torch.bfloat16, dequant, "VAE",
                                                keys_flux_vae)
            to_safetensors_flux_module(vae_sd, vae_sd_path, vae_sd_pattern, vae_sd_size,
                                       quantization, "VAE", None)
            clear_sd(vae_sd)
            print_resource_usage() #
        if "text_encoder" not in use_original:
            clip_sd = extract_norm_flux_module_sd(loadpath, torch.bfloat16, dequant, "Text Encoder",
                                                keys_flux_clip)
            to_safetensors_flux_module(clip_sd, clip_sd_path, clip_sd_pattern, clip_sd_size,
                                       quantization, "Text Encoder", None)
            clear_sd(clip_sd)
            print_resource_usage() #
        if "text_encoder_2" not in use_original:
            te_sd = extract_norm_flux_module_sd(loadpath, dtype, dequant, "Text Encoder 2",
                                                keys_flux_t5xxl)
            to_safetensors_flux_module(te_sd, te_sd_path, te_sd_pattern, te_sd_size,
                                       quantization, "Text Encoder 2", None)
            clear_sd(te_sd)
            print_resource_usage() #
        unet_sd = extract_norm_flux_module_sd(loadpath, dtype, dequant, "Transformer",
                                              keys_flux_transformer)
        clear_cache()
        print_resource_usage() #
        if not local:
            os.remove(loadpath)
            print("Deleted downloaded file.")
        clear_cache()
        print_resource_usage() #
        unet_sd = convert_flux_transformer_sd_to_diffusers(unet_sd)
        clear_cache()
        print_resource_usage() #
        to_safetensors_flux_module(unet_sd, unet_sd_path, unet_sd_pattern, unet_sd_size,
                                        quantization, "Transformer", metadata)
        clear_sd(unet_sd)
        print_resource_usage() #
        save_flux_other_diffusers(savepath, model_type, use_original)
        print_resource_usage() #

with torch.no_grad(): # lowest memory consumption, but higheest disk load
    def flux_to_diffusers_lowmem2(loadpath: str, savepath: str, dtype: torch.dtype = torch.bfloat16,

                          quantization: bool = False, model_type: str = "dev",

                          dequant: bool = False, use_original: list = ["vae", "text_encoder"],

                          new_repo_id: str = "", progress=gr.Progress(track_tqdm=True)):
        unet_sd_path = savepath.removesuffix("/") + "/transformer"
        unet_temp_path = system_temp_dir.removesuffix("/") + "/sharded"
        unet_sd_pattern = "diffusion_pytorch_model{suffix}.safetensors"
        unet_sd_size = "10GB"
        unet_temp_size = "5GB"
        te_sd_path = savepath.removesuffix("/") + "/text_encoder_2"
        te_sd_pattern = "model{suffix}.safetensors"
        te_sd_size = "5GB"
        clip_sd_path = savepath.removesuffix("/") + "/text_encoder"
        clip_sd_pattern = "model{suffix}.safetensors"
        clip_sd_size = "10GB"
        vae_sd_path = savepath.removesuffix("/") + "/vae"
        vae_sd_pattern = "diffusion_pytorch_model{suffix}.safetensors"
        vae_sd_size = "10GB"
        print_resource_usage() #
        metadata = {"format": "pt", **read_safetensors_metadata(loadpath)}
        clear_cache()
        print_resource_usage() #
        if "vae" not in use_original:
            vae_sd = extract_norm_flux_module_sd(loadpath, torch.bfloat16, dequant, "VAE",
                                                keys_flux_vae)
            to_safetensors_flux_module(vae_sd, vae_sd_path, vae_sd_pattern, vae_sd_size,
                                       quantization, "VAE", None)
            clear_sd(vae_sd)
            print_resource_usage() #
        if "text_encoder" not in use_original:
            clip_sd = extract_norm_flux_module_sd(loadpath, torch.bfloat16, dequant, "Text Encoder",
                                                keys_flux_clip)
            to_safetensors_flux_module(clip_sd, clip_sd_path, clip_sd_pattern, clip_sd_size,
                                       quantization, "Text Encoder", None)
            clear_sd(clip_sd)
            print_resource_usage() #
        if "text_encoder_2" not in use_original:
            te_sd = extract_norm_flux_module_sd(loadpath, dtype, dequant, "Text Encoder 2",
                                                keys_flux_t5xxl)
            to_safetensors_flux_module(te_sd, te_sd_path, te_sd_pattern, te_sd_size,
                                       quantization, "Text Encoder 2", None)
            clear_sd(te_sd)
            print_resource_usage() #
        unet_sd = extract_normalized_flux_state_dict_sharded(loadpath, dtype, dequant,
                                        unet_temp_path, unet_sd_pattern, unet_temp_size)
        clear_cache()
        print_resource_usage() #
        unet_sd = convert_flux_transformer_sd_to_diffusers_sharded(unet_sd, unet_temp_path,
                                                                   unet_sd_pattern, unet_temp_size)
        clear_cache()
        print_resource_usage() #
        to_safetensors_flux_module(unet_sd, unet_sd_path, unet_sd_pattern, unet_sd_size,
                                        quantization, "Transformer", metadata)
        clear_sd(unet_sd)
        print_resource_usage() #
        save_flux_other_diffusers(savepath, model_type, use_original)
        print_resource_usage() #

def convert_url_to_diffusers_flux(url, civitai_key="", is_upload_sf=False, data_type="bf16",

                                  model_type="dev", dequant=False, use_original=["vae", "text_encoder"],

                                  hf_user="", hf_repo="", q=None, progress=gr.Progress(track_tqdm=True)):
    progress(0, desc="Start converting...")
    temp_dir = "."
    print_resource_usage() #
    new_file = get_download_file(temp_dir, url, civitai_key)
    if not new_file:
        print(f"Not found: {url}")
        return ""
    new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #

    dtype = torch.bfloat16
    quantization = False
    if data_type == "fp8": dtype = torch.float8_e4m3fn
    elif data_type == "fp16": dtype = torch.float16
    elif data_type == "qfloat8":
        dtype = torch.bfloat16
        quantization = True
    else: dtype = torch.bfloat16

    new_repo_id = f"{hf_user}/{Path(new_repo_name).stem}"
    if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
    flux_to_diffusers_lowmem(new_file, new_repo_name, dtype, quantization, model_type, dequant, use_original, new_repo_id)

    """if is_upload_sf:

        import shutil

        shutil.move(str(Path(new_file).resolve()), str(Path(new_repo_name, Path(new_file).name).resolve()))

    else: os.remove(new_file)"""

    progress(1, desc="Converted.")
    q.put(new_repo_name)
    return new_repo_name

def convert_url_to_fixed_flux_safetensors(url, civitai_key="", is_upload_sf=False, data_type="bf16",

                                  model_type="dev", dequant=False, q=None, progress=gr.Progress(track_tqdm=True)):
    progress(0, desc="Start converting...")
    temp_dir = "."
    print_resource_usage() #
    new_file = get_download_file(temp_dir, url, civitai_key)
    if not new_file:
        print(f"Not found: {url}")
        return ""
    new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #

    dtype = torch.bfloat16
    quantization = False
    if data_type == "fp8": dtype = torch.float8_e4m3fn
    elif data_type == "fp16": dtype = torch.float16
    elif data_type == "qfloat8":
        dtype = torch.bfloat16
        quantization = True
    else: dtype = torch.bfloat16

    fix_flux_safetensors(new_file, new_repo_name, dtype, model_type, dequant)

    os.remove(new_file)

    progress(1, desc="Converted.")
    q.put(new_repo_name)
    return new_repo_name

def convert_url_to_diffusers_repo_flux(dl_url, hf_user, hf_repo, hf_token, civitai_key="", is_private=True, is_overwrite=False,

                                       is_upload_sf=False, data_type="bf16", model_type="dev", dequant=False,

                                       repo_urls=[], fix_only=False, use_original=["vae", "text_encoder"],

                                       progress=gr.Progress(track_tqdm=True)):
    import multiprocessing as mp
    import shutil
    if not hf_user:
        print(f"Invalid user name: {hf_user}")
        progress(1, desc=f"Invalid user name: {hf_user}")
        return gr.update(value=repo_urls, choices=repo_urls), gr.update(value="")
    if hf_token and not os.environ.get("HF_TOKEN"): os.environ['HF_TOKEN'] = hf_token
    if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY")
    q = mp.Queue()
    if fix_only:
        p = mp.Process(target=convert_url_to_fixed_flux_safetensors, args=(dl_url, civitai_key,
                    is_upload_sf, data_type, model_type, dequant, q))
        #new_path = convert_url_to_fixed_flux_safetensors(dl_url, civitai_key, is_upload_sf, data_type, model_type, dequant)
    else:
        p = mp.Process(target=convert_url_to_diffusers_flux, args=(dl_url, civitai_key,
                    is_upload_sf, data_type, model_type, dequant, use_original, hf_user, hf_repo, q))
        #new_path = convert_url_to_diffusers_flux(dl_url, civitai_key, is_upload_sf, data_type, model_type, dequant)
    p.start()
    new_path = q.get()
    p.join()
    if not new_path: return ""
    new_repo_id = f"{hf_user}/{Path(new_path).stem}"
    if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
    if not is_repo_name(new_repo_id):
        print(f"Invalid repo name: {new_repo_id}")
        progress(1, desc=f"Invalid repo name: {new_repo_id}")
        return gr.update(value=repo_urls, choices=repo_urls), gr.update(value="")
    if not is_overwrite and is_repo_exists(new_repo_id):
        print(f"Repo already exists: {new_repo_id}")
        progress(1, desc=f"Repo already exists: {new_repo_id}")
        return gr.update(value=repo_urls, choices=repo_urls), gr.update(value="")
    #save_readme_md(new_path, dl_url)
    repo_url = create_diffusers_repo(new_repo_id, new_path, is_private, is_overwrite)
    shutil.rmtree(new_path)
    if not repo_urls: repo_urls = []
    repo_urls.append(repo_url)
    md = "Your new repo:<br>"
    for u in repo_urls:
        md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
    return gr.update(value=repo_urls, choices=repo_urls), gr.update(value=md)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--url", default=None, type=str, required=False, help="URL of the model to convert.")
    parser.add_argument("--file", default=None, type=str, required=False, help="Filename of the model to convert.")
    parser.add_argument("--fix", action="store_true", help="Only fix the keys of the local model.")
    parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
    parser.add_argument("--dtype", type=str, default="fp8")
    parser.add_argument("--model", type=str, default="dev")
    parser.add_argument("--dequant", action="store_true", help="Dequantize model.")
    args = parser.parse_args()
    assert (args.url, args.file) != (None, None), "Must provide --url or --file!"

    dtype = torch.bfloat16
    quantization = False
    if args.dtype == "fp8": dtype = torch.float8_e4m3fn
    elif args.dtype == "fp16": dtype = torch.float16
    elif args.dtype == "qfloat8":
        dtype = torch.bfloat16
        quantization = True
    else: dtype = torch.bfloat16

    use_original = ["vae", "text_encoder"]
    new_repo_id = ""
    use_local = True

    if args.file is not None and Path(args.file).exists():
        if args.fix: normalize_flux_state_dict(args.file, ".", dtype, args.dequant)
        else: flux_to_diffusers_lowmem(args.file, Path(args.file).stem, dtype, quantization,
                                       args.model, args.dequant, use_original, new_repo_id, use_local)
    elif args.url is not None:
        convert_url_to_diffusers_flux(args.url, args.civitai_key, False, args.dtype, args.model,
                                      args.dequant)