|
import os |
|
import spaces |
|
import gradio as gr |
|
from gradio_imageslider import ImageSlider |
|
import torch |
|
torch.jit.script = lambda f: f |
|
from hidiffusion import apply_hidiffusion |
|
from diffusers import ( |
|
ControlNetModel, |
|
StableDiffusionXLControlNetImg2ImgPipeline, |
|
DDIMScheduler, |
|
) |
|
from controlnet_aux import AnylineDetector |
|
from compel import Compel, ReturnedEmbeddingsType |
|
from PIL import Image |
|
import time |
|
import numpy as np |
|
|
|
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1" |
|
IS_SPACE = os.environ.get("SPACE_ID", None) is not None |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
dtype = torch.float16 |
|
|
|
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1" |
|
|
|
print(f"device: {device}") |
|
print(f"dtype: {dtype}") |
|
print(f"low memory: {LOW_MEMORY}") |
|
|
|
|
|
model = "stabilityai/stable-diffusion-xl-base-1.0" |
|
|
|
|
|
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler") |
|
|
|
|
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
"TheMistoAI/MistoLine", |
|
torch_dtype=torch.float16, |
|
revision="refs/pr/3", |
|
variant="fp16", |
|
) |
|
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained( |
|
model, |
|
controlnet=controlnet, |
|
torch_dtype=dtype, |
|
variant="fp16", |
|
use_safetensors=True, |
|
scheduler=scheduler, |
|
) |
|
|
|
compel = Compel( |
|
tokenizer=[pipe.tokenizer, pipe.tokenizer_2], |
|
text_encoder=[pipe.text_encoder, pipe.text_encoder_2], |
|
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, |
|
requires_pooled=[False, True], |
|
) |
|
pipe = pipe.to(device) |
|
|
|
if not IS_SPACES_ZERO: |
|
apply_hidiffusion(pipe) |
|
|
|
pipe.enable_model_cpu_offload() |
|
pipe.enable_vae_tiling() |
|
|
|
anyline = AnylineDetector.from_pretrained( |
|
"TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline" |
|
).to(device) |
|
|
|
|
|
def pad_image(image): |
|
w, h = image.size |
|
if w == h: |
|
return image |
|
elif w > h: |
|
new_image = Image.new(image.mode, (w, w), (0, 0, 0)) |
|
pad_w = 0 |
|
pad_h = (w - h) // 2 |
|
new_image.paste(image, (0, pad_h)) |
|
return new_image |
|
else: |
|
new_image = Image.new(image.mode, (h, h), (0, 0, 0)) |
|
pad_w = (h - w) // 2 |
|
pad_h = 0 |
|
new_image.paste(image, (pad_w, 0)) |
|
return new_image |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def predict( |
|
input_image, |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
guidance_scale=8.5, |
|
scale=2, |
|
controlnet_conditioning_scale=0.5, |
|
strength=1.0, |
|
controlnet_start=0.0, |
|
controlnet_end=1.0, |
|
guassian_sigma=2.0, |
|
intensity_threshold=3, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
if IS_SPACES_ZERO: |
|
apply_hidiffusion(pipe) |
|
if input_image is None: |
|
raise gr.Error("Please upload an image.") |
|
padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB") |
|
conditioning, pooled = compel([prompt, negative_prompt]) |
|
generator = torch.manual_seed(seed) |
|
last_time = time.time() |
|
anyline_image = anyline( |
|
padded_image, |
|
detect_resolution=1280, |
|
guassian_sigma=max(0.01, guassian_sigma), |
|
intensity_threshold=intensity_threshold, |
|
) |
|
|
|
images = pipe( |
|
image=padded_image, |
|
control_image=anyline_image, |
|
strength=strength, |
|
prompt_embeds=conditioning[0:1], |
|
pooled_prompt_embeds=pooled[0:1], |
|
negative_prompt_embeds=conditioning[1:2], |
|
negative_pooled_prompt_embeds=pooled[1:2], |
|
width=1024 * scale, |
|
height=1024 * scale, |
|
controlnet_conditioning_scale=float(controlnet_conditioning_scale), |
|
controlnet_start=float(controlnet_start), |
|
controlnet_end=float(controlnet_end), |
|
generator=generator, |
|
num_inference_steps=30, |
|
guidance_scale=guidance_scale, |
|
eta=1.0, |
|
) |
|
print(f"Time taken: {time.time() - last_time}") |
|
return (padded_image, images.images[0]), padded_image, anyline_image |
|
|
|
|
|
css = """ |
|
#intro{ |
|
# max-width: 32rem; |
|
# text-align: center; |
|
# margin: 0 auto; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown( |
|
""" |
|
# Enhance This |
|
### HiDiffusion SDXL |
|
|
|
[HiDiffusion](https://github.com/megvii-research/HiDiffusion) enables higher-resolution image generation. |
|
You can upload an initial image and prompt to generate an enhanced version. |
|
SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co./TheMistoAI/MistoLine) |
|
[Duplicate Space](https://huggingface.co./spaces/radames/Enhance-This-HiDiffusion-SDXL?duplicate=true) to avoid the queue. |
|
|
|
<small> |
|
<b>Notes</b> The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun! |
|
|
|
</small> |
|
""", |
|
elem_id="intro", |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image_input = gr.Image(type="pil", label="Input Image") |
|
prompt = gr.Textbox( |
|
label="Prompt", |
|
info="The prompt is very important to get the desired results. Please try to describe the image as best as you can. Accepts Compel Syntax", |
|
) |
|
negative_prompt = gr.Textbox( |
|
label="Negative Prompt", |
|
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic", |
|
) |
|
seed = gr.Slider( |
|
minimum=0, |
|
maximum=2**64 - 1, |
|
value=1415926535897932, |
|
step=1, |
|
label="Seed", |
|
randomize=True, |
|
) |
|
with gr.Accordion(label="Advanced", open=False): |
|
guidance_scale = gr.Slider( |
|
minimum=0, |
|
maximum=50, |
|
value=8.5, |
|
step=0.001, |
|
label="Guidance Scale", |
|
) |
|
scale = gr.Slider( |
|
minimum=1, |
|
maximum=5, |
|
value=2, |
|
step=1, |
|
label="Magnification Scale", |
|
interactive=not IS_SPACE, |
|
) |
|
controlnet_conditioning_scale = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.001, |
|
value=0.5, |
|
label="ControlNet Conditioning Scale", |
|
) |
|
strength = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.001, |
|
value=1, |
|
label="Strength", |
|
) |
|
controlnet_start = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.001, |
|
value=0.0, |
|
label="ControlNet Start", |
|
) |
|
controlnet_end = gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.001, |
|
value=1.0, |
|
label="ControlNet End", |
|
) |
|
guassian_sigma = gr.Slider( |
|
minimum=0.01, |
|
maximum=10.0, |
|
step=0.1, |
|
value=2.0, |
|
label="(Anyline) Guassian Sigma", |
|
) |
|
intensity_threshold = gr.Slider( |
|
minimum=0, |
|
maximum=255, |
|
step=1, |
|
value=3, |
|
label="(Anyline) Intensity Threshold", |
|
) |
|
|
|
btn = gr.Button() |
|
with gr.Column(scale=2): |
|
with gr.Group(): |
|
image_slider = ImageSlider(position=0.5) |
|
with gr.Row(): |
|
padded_image = gr.Image(type="pil", label="Padded Image") |
|
anyline_image = gr.Image(type="pil", label="Anyline Image") |
|
inputs = [ |
|
image_input, |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
guidance_scale, |
|
scale, |
|
controlnet_conditioning_scale, |
|
strength, |
|
controlnet_start, |
|
controlnet_end, |
|
guassian_sigma, |
|
intensity_threshold, |
|
] |
|
outputs = [image_slider, padded_image, anyline_image] |
|
btn.click(lambda x: None, inputs=None, outputs=image_slider).then( |
|
fn=predict, inputs=inputs, outputs=outputs |
|
) |
|
gr.Examples( |
|
fn=predict, |
|
inputs=inputs, |
|
outputs=outputs, |
|
examples=[ |
|
[ |
|
"./examples/lara.jpeg", |
|
"photography of lara croft 8k high definition award winning", |
|
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic", |
|
5436236241, |
|
8.5, |
|
2, |
|
0.8, |
|
1.0, |
|
0.0, |
|
0.9, |
|
2, |
|
3, |
|
], |
|
[ |
|
"./examples/cybetruck.jpeg", |
|
"photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future", |
|
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic", |
|
383472451451, |
|
8.5, |
|
2, |
|
0.8, |
|
0.8, |
|
0.0, |
|
0.9, |
|
2, |
|
3, |
|
], |
|
[ |
|
"./examples/jesus.png", |
|
"a photorealistic painting of Jesus Christ, 4k high definition", |
|
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic", |
|
13317204146129588000, |
|
8.5, |
|
2, |
|
0.8, |
|
0.8, |
|
0.0, |
|
0.9, |
|
2, |
|
3, |
|
], |
|
[ |
|
"./examples/anna-sullivan-DioLM8ViiO8-unsplash.jpg", |
|
"A crowded stadium with enthusiastic fans watching a daytime sporting event, the stands filled with colorful attire and the sun casting a warm glow", |
|
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic", |
|
5623124123512, |
|
8.5, |
|
2, |
|
0.8, |
|
0.8, |
|
0.0, |
|
0.9, |
|
2, |
|
3, |
|
], |
|
[ |
|
"./examples/img_aef651cb-2919-499d-aa49-6d4e2e21a56e_1024.jpg", |
|
"a large red flower on a black background 4k high definition", |
|
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic", |
|
23123412341234, |
|
8.5, |
|
2, |
|
0.8, |
|
0.8, |
|
0.0, |
|
0.9, |
|
2, |
|
3, |
|
], |
|
[ |
|
"./examples/huggingface.jpg", |
|
"photo realistic huggingface human emoji costume, round, yellow, (human skin)+++ (human texture)+++", |
|
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic, emoji cartoon, drawing, pixelated", |
|
12312353423, |
|
15.206, |
|
2, |
|
0.364, |
|
0.8, |
|
0.0, |
|
0.9, |
|
2, |
|
3, |
|
], |
|
], |
|
cache_examples="lazy", |
|
) |
|
|
|
|
|
demo.queue(api_open=True) |
|
demo.launch(show_api=True) |
|
|