import streamlit as st from streamlit_chat import message from langchain import HuggingFaceHub, ConversationChain from langchain.chains.conversation.memory import ConversationBufferMemory, ConversationSummaryMemory from langchain.memory import ConversationBufferWindowMemory import os # Get API key from environment variable hf_api_key = os.environ.get("HUGGINGFACEHUB_API_TOKEN") # Initialize session state variables if 'conversation' not in st.session_state: st.session_state['conversation'] = None if 'messages' not in st.session_state: st.session_state['messages'] = [] if 'API_Key' not in st.session_state: st.session_state['API_Key'] = '' # No need for API key input in this case # Setting page title and header st.set_page_config(page_title="Chat GPT Clone", page_icon=":robot_face:") st.markdown("

How can I assist you?

", unsafe_allow_html=True) # Sidebar (no API key input needed) st.sidebar.title("Options") # Summarization Button summarise_button = st.sidebar.button("Summarise the conversation", key="summarise") if summarise_button: with st.spinner("Summarizing..."): # Add a spinner for visual feedback # Access the buffer for ConversationBufferMemory summary = st.session_state['conversation'].memory.buffer st.sidebar.write("Conversation Summary:\n\n" + summary) # Defining the get_response function def get_response(user_input, api_key): if st.session_state['conversation'] is None: llm = HuggingFaceHub( repo_id="google/gemini-pro-flash", # Use Gemini Pro Flash model_kwargs={"temperature": 0.1, "max_new_tokens": 512} ) # Use ConversationBufferMemory for summarization st.session_state['conversation'] = ConversationChain( llm=llm, verbose=True, memory=ConversationBufferMemory() ) response = st.session_state['conversation'].predict(input=user_input) return response # Chat UI response_container = st.container() container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_area("Your question goes here:", key='input', height=100) submit_button = st.form_submit_button(label='Send') if submit_button and user_input: # Check if user_input is not empty st.session_state['messages'].append(user_input) with st.spinner("Thinking..."): # Add a spinner model_response = get_response(user_input, hf_api_key) st.session_state['messages'].append(model_response) with response_container: if st.session_state['messages']: # Check if there are messages to display for i in range(len(st.session_state['messages'])): if (i % 2) == 0: message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user') else: message(st.session_state['messages'][i], key=str(i) + '_AI')