File size: 1,550 Bytes
5e62651 135b3cc 5e62651 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import streamlit as st
from transformers import pipeline
access = "hf_"
token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa"
def main():
# Load the text classification model pipeline
analysis = pipeline("text-classification", model='ZephyruSalsify/FinNews_SentimentAnalysis')
classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token)
st.set_page_config(page_title="Financial News Analysis", page_icon="♕")
# Streamlit application layout
st.title("Financial News Analysis")
st.write("Analyze corresponding Topic and Trend for Financial News!")
st.image("./Fin.jpg", use_column_width = True)
# Text input for user to enter the text
text = st.text_area("Enter the Financial News", "")
# Perform text classification when the user clicks the "Classify" button
if st.button("Analyze"):
label_1 = ""
score_1 = 0.0
label_2 = ""
score_2 = 0.0
# Perform text analysis on the input text
results_1 = analysis(text)[0]
results_2 = classification(text)[0]
label_1 = results_1["label"]
score_1 = results_1["score"]
label_2 = results_2["label"]
score_2 = results_2["score"]
st.write("Financial Text:", text)
st.write("Trend:", label_1)
st.write("Trend_Score:", score_1)
st.write("Finance Topic:", label_2)
st.write("Topic_Score:", score_2)
if__name__=="__main__":
main() |