Spaces:
Sleeping
Sleeping
import torch | |
from diffusers import AmusedPipeline | |
from transformers import pipeline | |
import PIL.Image | |
from diffusers.utils import load_image | |
import gradio as gr | |
from PIL import Image | |
import cv2 | |
import os, random, gc | |
import numpy as np | |
from accelerate import Accelerator | |
accelerator = Accelerator(cpu=True) | |
pipe = accelerator.prepare(AmusedPipeline.from_pretrained("amused/amused-512", variant=None, torch_dtype=torch.float32, use_safetensors=True)) | |
pipe.vqvae.to(torch.float32) | |
pipe.to("cpu") | |
apol=[] | |
def plex(prompt, guod, fifth, twice): | |
gc.collect() | |
apol=[] | |
nm = random.randint(1, 4836928) | |
while nm % 32 != 0: | |
nm = random.randint(1, 4836928) | |
generator = torch.Generator(device="cpu").manual_seed(nm) | |
image = pipe(prompt=prompt,guidance_scale=guod,num_inference_steps=twice,num_images_per_prompt=fifth,generator=generator) | |
for a, imze in enumerate(image["images"]): | |
apol.append(imze) | |
return apol | |
iface = gr.Interface(fn=plex, inputs=[gr.Textbox(label="prompt",),gr.Slider(label="guidance scale",minimum=1,step=1,maximum=10,value=4),gr.Slider(label="num images", minimum=1, step=1, maximum=4, value=1), gr.Slider(label="num inference steps", minimum=1, step=1, maximum=20, value=12)], outputs=gr.Gallery(label="out", columns=2),description="Running on cpu, very slow! by JoPmt.") | |
iface.queue(max_size=1,api_open=False) | |
iface.launch(max_threads=1) |