Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from diffusers import AutoPipelineForText2Image
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
@@ -8,21 +8,25 @@ from transformers import pipeline
|
|
8 |
from diffusers.utils import load_image
|
9 |
from accelerate import Accelerator
|
10 |
|
11 |
-
accelerator = Accelerator()
|
12 |
apol=[]
|
13 |
pipe = accelerator.prepare(AutoPipelineForText2Image.from_pretrained("openskyml/overall-v1", torch_dtype=torch.float32, variant=None, use_safetensors=False, safety_checker=None))
|
|
|
14 |
pipe.unet.to(memory_format=torch.channels_last)
|
15 |
pipe = accelerator.prepare(pipe.to("cpu"))
|
16 |
-
def plex(prompt,neg_prompt):
|
17 |
-
|
18 |
-
|
19 |
-
nm
|
|
|
|
|
|
|
20 |
generator = torch.Generator(device="cpu").manual_seed(nm)
|
21 |
image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, num_inference_steps=15)
|
22 |
for a, imze in enumerate(image["images"]):
|
23 |
apol.append(imze)
|
24 |
return apol
|
25 |
|
26 |
-
iface = gr.Interface(fn=plex,inputs=[gr.Textbox(label="Prompt"), gr.Textbox(label="negative_prompt", value="low quality, bad quality")],outputs=gr.Gallery(label="Generated Output Image", columns=1),
|
27 |
iface.queue(max_size=1,api_open=False)
|
28 |
iface.launch(max_threads=1)
|
|
|
1 |
+
from diffusers import AutoPipelineForText2Image, PNDMScheduler
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
|
|
8 |
from diffusers.utils import load_image
|
9 |
from accelerate import Accelerator
|
10 |
|
11 |
+
accelerator = Accelerator(cpu=True)
|
12 |
apol=[]
|
13 |
pipe = accelerator.prepare(AutoPipelineForText2Image.from_pretrained("openskyml/overall-v1", torch_dtype=torch.float32, variant=None, use_safetensors=False, safety_checker=None))
|
14 |
+
pipe.scheduler = accelerator.prepare(PNDMScheduler.from_config(pipe.scheduler.config))
|
15 |
pipe.unet.to(memory_format=torch.channels_last)
|
16 |
pipe = accelerator.prepare(pipe.to("cpu"))
|
17 |
+
def plex(prompt,neg_prompt,nut):
|
18 |
+
if nut == 0:
|
19 |
+
nm = random.randint(1, 2147483616)
|
20 |
+
while nm % 32 != 0:
|
21 |
+
nm = random.randint(1, 2147483616)
|
22 |
+
else:
|
23 |
+
nm=nut
|
24 |
generator = torch.Generator(device="cpu").manual_seed(nm)
|
25 |
image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, num_inference_steps=15)
|
26 |
for a, imze in enumerate(image["images"]):
|
27 |
apol.append(imze)
|
28 |
return apol
|
29 |
|
30 |
+
iface = gr.Interface(fn=plex,inputs=[gr.Textbox(label="Prompt"), gr.Textbox(label="negative_prompt", value="low quality, bad quality"),gr.Slider(label="manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0)],outputs=gr.Gallery(label="Generated Output Image", columns=1),description="Running on cpu, very slow! by JoPmt.")
|
31 |
iface.queue(max_size=1,api_open=False)
|
32 |
iface.launch(max_threads=1)
|