import logging import os import time import uuid import gradio as gr import soundfile as sf from model import get_pretrained_model, language_to_models title = "# Text-to-speech (TTS): Haseeb Ahmed" description = """ This space shows how to convert text to speech with Next-gen Kaldi. It is running on CPU within a docker container provided by Hugging Face. """ # css style is copied from # https://huggingface.co./spaces/alphacep/asr/blob/main/app.py#L113 css = """ .result {display:flex;flex-direction:column} .result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} .result_item_success {background-color:mediumaquamarine;color:white;align-self:start} .result_item_error {background-color:#ff7070;color:white;align-self:start} """ examples = [ ["Min-nan (闽南话)", "csukuangfj/vits-mms-nan", "ài piaǸ chiah ē iaN̂", 0, 1.0], ["Thai", "csukuangfj/vits-mms-tha", "ฉันรักคุณ", 0, 1.0], ] def update_model_dropdown(language: str): if language in language_to_models: choices = language_to_models[language] return gr.Dropdown( choices=choices, value=choices[0], interactive=True, ) raise ValueError(f"Unsupported language: {language}") def build_html_output(s: str, style: str = "result_item_success"): return f"""
{s}
""" def process(language: str, repo_id: str, text: str, sid: str, speed: float): logging.info(f"Input text: {text}. sid: {sid}, speed: {speed}") sid = int(sid) tts = get_pretrained_model(repo_id, speed) start = time.time() audio = tts.generate(text, sid=sid) end = time.time() if len(audio.samples) == 0: raise ValueError( "Error in generating audios. Please read previous error messages." ) duration = len(audio.samples) / audio.sample_rate elapsed_seconds = end - start rtf = elapsed_seconds / duration info = f""" Wave duration : {duration:.3f} s
Processing time: {elapsed_seconds:.3f} s
RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f}
""" logging.info(info) logging.info(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}") filename = str(uuid.uuid4()) filename = f"{filename}.wav" sf.write( filename, audio.samples, samplerate=audio.sample_rate, subtype="PCM_16", ) return filename, build_html_output(info) demo = gr.Blocks(css=css) with demo: gr.Markdown(title) language_choices = list(language_to_models.keys()) language_radio = gr.Radio( label="Language", choices=language_choices, value=language_choices[0], ) model_dropdown = gr.Dropdown( choices=language_to_models[language_choices[0]], label="Select a model", value=language_to_models[language_choices[0]][0], ) language_radio.change( update_model_dropdown, inputs=language_radio, outputs=model_dropdown, ) with gr.Tabs(): with gr.TabItem("Please input your text"): input_text = gr.Textbox( label="Input text", info="Your text", lines=3, placeholder="Please input your text here", ) input_sid = gr.Textbox( label="Speaker ID", info="Speaker ID", lines=1, max_lines=1, value="0", placeholder="Speaker ID. Valid only for mult-speaker model", ) input_speed = gr.Slider( minimum=0.1, maximum=10, value=1, step=0.1, label="Speed (larger->faster; smaller->slower)", ) input_button = gr.Button("Submit") output_audio = gr.Audio(label="Output") output_info = gr.HTML(label="Info") input_button.click( process, inputs=[ language_radio, model_dropdown, input_text, input_sid, input_speed, ], outputs=[ output_audio, output_info, ], ) gr.Markdown(description) def download_espeak_ng_data(): os.system( """ cd /tmp wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2 tar xf espeak-ng-data.tar.bz2 """ ) if __name__ == "__main__": download_espeak_ng_data() formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) demo.launch()