File size: 2,027 Bytes
286c232
 
09767df
 
 
45b9135
286c232
 
 
 
45b9135
286c232
45b9135
286c232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import cv2
from PIL import Image

import os
os.environ["SM_FRAMEWORK"] = "tf.keras"
import segmentation_models as sm
import numpy as np
from matplotlib import pyplot as plt
import random

from keras.models import load_model
from keras import backend as K

import gradio as gr

def jaccard_coef(y_true, y_pred):
  y_true_flatten = K.flatten(y_true)
  y_pred_flatten = K.flatten(y_pred)

  intersection = K.sum(y_true_flatten*y_pred_flatten) + 1.0
  union = K.sum(y_true_flatten) + K.sum(y_pred_flatten) - intersection + 1.0
  iou = intersection / union

  return iou

weights = [0.166,0.166,0.166,0.166,0.166,0.166]


dice_loss = sm.losses.DiceLoss(class_weights = weights)


focal_loss = sm.losses.CategoricalFocalLoss()

total_loss = dice_loss + (1 * focal_loss)



saved_model = load_model('model/satellite_segmentation_full.h5',
                         custom_objects=({'dice_loss_plus_1focal_loss': total_loss, 
                                          'jaccard_coef': jaccard_coef}))


def process_input_image(image_source):
  image = np.expand_dims(image_source, 0)

  prediction = saved_model.predict(image)
  predicted_image = np.argmax(prediction, axis=3)

  predicted_image = predicted_image[0,:,:]
  predicted_image = predicted_image * 50
  return 'Predicted Masked Image', predicted_image



my_app = gr.Blocks()


with my_app:
  gr.Markdown("Statellite Image Segmentation Application UI with Gradio")
  with gr.Tabs():
    with gr.TabItem("Select your image"):
      with gr.Row():
        with gr.Column():
            img_source = gr.Image(label="Please select source Image", shape=(256, 256))
            source_image_loader = gr.Button("Load above Image")
        with gr.Column():
            output_label = gr.Label(label="Image Info")
            img_output = gr.Image(label="Image Output")
    source_image_loader.click(
        process_input_image,
        [
            img_source
        ],
        [
            output_label,
            img_output
        ]
    )


my_app.launch(debug=True)