Jangai commited on
Commit
95cdd7b
·
verified ·
1 Parent(s): ea28d4c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -8
app.py CHANGED
@@ -9,9 +9,9 @@ import logging
9
  logging.basicConfig(level=logging.DEBUG)
10
 
11
  # Load the pre-trained model and feature extractor
12
- model_name = "JoshuaKelleyDs/quickdraw-DeiT-tiny-finetune"
13
  logging.info("Loading image processor and model...")
14
- feature_extractor = AutoFeatureExtractor.from_pretrained(model_name, image_mean=[0.5], image_std=[0.5])
15
  model = AutoModelForImageClassification.from_pretrained(model_name)
16
 
17
  # Define the prediction function
@@ -27,13 +27,8 @@ def predict(image):
27
  logging.debug("Converting to NumPy array...")
28
  image = np.array(image).astype('uint8')
29
  logging.debug("Converting NumPy array to PIL image...")
30
- image = Image.fromarray(image, 'RGBA').convert('L') # Convert to grayscale (L mode)
31
  logging.debug("Image converted successfully.")
32
-
33
- # Ensure the image has the correct number of dimensions
34
- if len(image.size) == 2:
35
- image = np.expand_dims(image, axis=-1)
36
- logging.debug("Added dimension to image to match model input requirements.")
37
 
38
  logging.info("Processing image...")
39
  inputs = feature_extractor(images=image, return_tensors="pt")
 
9
  logging.basicConfig(level=logging.DEBUG)
10
 
11
  # Load the pre-trained model and feature extractor
12
+ model_name = "JoshuaKelleyDs/quickdraw-MobileVITV2-2.0-Finetune"
13
  logging.info("Loading image processor and model...")
14
+ feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
15
  model = AutoModelForImageClassification.from_pretrained(model_name)
16
 
17
  # Define the prediction function
 
27
  logging.debug("Converting to NumPy array...")
28
  image = np.array(image).astype('uint8')
29
  logging.debug("Converting NumPy array to PIL image...")
30
+ image = Image.fromarray(image, 'RGBA').convert('RGB')
31
  logging.debug("Image converted successfully.")
 
 
 
 
 
32
 
33
  logging.info("Processing image...")
34
  inputs = feature_extractor(images=image, return_tensors="pt")